7,594 research outputs found
Discovery of carbon monoxide in the upper atmosphere of Pluto
Pluto's icy surface has changed colour and its atmosphere has swelled since
its last closest approach to the Sun in 1989. The thin atmosphere is produced
by evaporating ices, and so can also change rapidly, and in particular carbon
monoxide should be present as an active thermostat. Here we report the
discovery of gaseous CO via the 1.3mm wavelength J=2-1 rotational transition,
and find that the line-centre signal is more than twice as bright as a
tentative result obtained by Bockelee-Morvan et al. in 2000. Greater
surface-ice evaporation over the last decade could explain this, or increased
pressure could have caused the atmosphere to expand. The gas must be cold, with
a narrow line-width consistent with temperatures around 50 K, as predicted for
the very high atmosphere, and the line brightness implies that CO molecules
extend up to approximately 3 Pluto radii above the surface. The upper
atmosphere must have changed markedly over only a decade since the prior
search, and more alterations could occur by the arrival of the New Horizons
mission in 2015.Comment: 5 pages; accepted for publication in MNRAS Letter
Incommensurate Charge and Spin Fluctuations in d-wave Superconductors
We show analytic results for the irreducible charge and spin
susceptibilities, , where is the momentum
transfer between the nodes in d-wave superconductors. Using the BCS theory and
a circular Fermi surface, we find that the singular behavior of the irreducible
charge susceptibility leads to the dynamic incommensurate charge collective
modes. The peaks in the charge structure factor occur at a set of wave vectors
which form an ellipse around and in
momentum space with momentum dependent spectral weight. It is also found that,
due to the non-singular irreducible spin susceptibility, an extremely strong
interaction via random phase approximation is required to support the magnetic
peaks near . Under certain conditions, the peaks in the magnetic
structure factor occur near and .Comment: 5 pages, 3 figure
Atom interferometer as a selective sensor of rotation or gravity
In the presence of Earth gravity and gravity-gradient forces, centrifugal and
Coriolis forces caused by the Earth rotation, the phase of the time-domain atom
interferometers is calculated with accuracy up to the terms proportional to the
fourth degree of the time separation between pulses. We considered double-loop
atom interferometers and found appropriate condition to eliminate their
sensitivity to acceleration to get atomic gyroscope, or to eliminate the
sensitivity to rotation to increase accuracy of the atomic gravimeter.
Consequent use of these interferometers allows one to measure all components of
the acceleration and rotation frequency projection on the plane perpendicular
to gravity acceleration. Atom interference on the Raman transition driving by
noncounterpropagating optical fields is proposed to exclude stimulated echo
processes which can affect the accuracy of the atomic gyroscopes. Using
noncounterpropagating optical fields allows one to get a new type of the Ramsey
fringes arising in the unidirectional Raman pulses and therefore centered at
the two-quantum line center. Density matrix in the Wigner representation is
used to perform calculations. It is shown that in the time between pulses, in
the noninertial frame, for atoms with fully quantized spatial degrees of
freedom, this density matrix obeys classical Liouville equations.Comment: 21 pages, 4 figures, extended references, discussion, and motivatio
UCN Upscattering rates in a molecular deuterium crystal
A calculation of ultra-cold neutron (UCN) upscattering rates in molecular
deuterium solids has been carried out, taking into account intra-molecular
exictations and phonons. The different moelcular species ortho-D2 (with even
rotational quantum number J) and para-D2 (with odd J) exhibit significantly
different UCN-phonon annihilation cross-sections. Para- to ortho-D2 conversion,
furthermore, couples UCN to an energy bath of excited rotational states without
mediating phonons. This anomalous upscattering mechanism restricts the UCN
lifetime to 4.6 msec in a normal-D2 solid with 33% para content.Comment: 3 pages, one figur
Symmetry, complexity and multicritical point of the two-dimensional spin glass
We analyze models of spin glasses on the two-dimensional square lattice by
exploiting symmetry arguments. The replicated partition functions of the Ising
and related spin glasses are shown to have many remarkable symmetry properties
as functions of the edge Boltzmann factors. It is shown that the applications
of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate
reduced complexities when the elements of the matrix satisfy certain
conditions, suggesting that the system has special simplicities under such
conditions. Using these duality and symmetry arguments we present a conjecture
on the exact location of the multicritical point in the phase diagram.Comment: 32 pages, 6 figures; a few typos corrected. To be published in J.
Phys.
An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS
We report on the construction, tests, calibrations and commissioning of an
Optical Readout Time Projection Chamber (O-TPC) detector operating with a
CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure
the cross sections of several key nuclear reactions involved in stellar
evolution. In particular, a study of the rate of formation of oxygen and carbon
during the process of helium burning will be performed by exposing the chamber
gas to intense nearly mono-energetic gamma-ray beams at the High Intensity
Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of
30x30x21 cm^3. Ionization electrons drift towards a double parallel grid
avalanche multiplier, yielding charge multiplication and light emission.
Avalanche induced photons from N2 emission are collected, intensified and
recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional
track images. The event's time projection (third coordinate) and the deposited
energy are recorded by photomultipliers and by the TPC charge-signal,
respectively. A dedicated VME-based data acquisition system and associated data
analysis tools were developed to record and analyze these data. The O-TPC has
been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd
source placed within its volume with a measured energy resolution of 3.0%.
Tracks of alpha and 12C particles from the dissociation of 16O and of three
alpha-particles from the dissociation of 12C have been measured during initial
in-beam test experiments performed at the HIgS facility at Duke University. The
full detection system and its performance are described and the results of the
preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program,
ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103
Development of a generic activities model of command and control
This paper reports on five different models of command and control. Four different models are reviewed: a process model, a contextual control model, a decision ladder model and a functional model. Further to this, command and control activities are analysed in three distinct domains: armed forces, emergency services and civilian services. From this analysis, taxonomies of command and control activities are developed that give rise to an activities model of command and control. This model will be used to guide further research into technological support of command and control activities
The optical calcium frequency standards of PTB and NIST
We describe the current status of the Ca optical frequency standards with
laser-cooled neutral atoms realized in two different laboratories for the
purpose of developing a possible future optical atomic clock.
Frequency measurements performed at the Physikalisch-Technische Bundesanstalt
(PTB) and the National Institute of Standards and Technology (NIST) make the
frequency of the clock transition of 40Ca one of the best known optical
frequencies (relative uncertainty 1.2e-14) and the measurements of this
frequency in both laboratories agree to well within their respective
uncertainties.
Prospects for improvement by orders of magnitude in the relative uncertainty
of the standard look feasible.Comment: 13 pages, 11 figures, to appear in Comptes Rendus Physiqu
Gate-controlled Guiding of Electrons in Graphene
Ballistic semiconductor structures have allowed the realization of
optics-like phenomena in electronics, including magnetic focusing and lensing.
An extension that appears unique to graphene is to use both n and p carrier
types to create electronic analogs of optical devices having both positive and
negative indices of refraction. Here, we use gate-controlled density with both
p and n carrier types to demonstrate the analog of the fiber-optic guiding in
graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding,
based on the principle of angle-selective transmission though the graphene p-n
interface, and (2) unipolar fiber-optic guiding, using total internal
reflection controlled by carrier density. Modulation of guiding efficiency
through gating is demonstrated and compared to numerical simulations, which
indicates that interface roughness limits guiding performance, with
few-nanometer effective roughness extracted. The development of p-n and
fiber-optic guiding in graphene may lead to electrically reconfigurable wiring
in high-mobility devices.Comment: supplementary materal at
http://marcuslab.harvard.edu/papers/OG_SI.pd
Universality in the Screening Cloud of Dislocations Surrounding a Disclination
A detailed analytical and numerical analysis for the dislocation cloud
surrounding a disclination is presented. The analytical results show that the
combined system behaves as a single disclination with an effective fractional
charge which can be computed from the properties of the grain boundaries
forming the dislocation cloud. Expressions are also given when the crystal is
subjected to an external two-dimensional pressure. The analytical results are
generalized to a scaling form for the energy which up to core energies is given
by the Young modulus of the crystal times a universal function. The accuracy of
the universality hypothesis is numerically checked to high accuracy. The
numerical approach, based on a generalization from previous work by S. Seung
and D.R. Nelson ({\em Phys. Rev A 38:1005 (1988)}), is interesting on its own
and allows to compute the energy for an {\em arbitrary} distribution of
defects, on an {\em arbitrary geometry} with an arbitrary elastic {\em energy}
with very minor additional computational effort. Some implications for recent
experimental, computational and theoretical work are also discussed.Comment: 35 pages, 21 eps file
- …
