369 research outputs found
A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions
An improved representation of the carbon cycle in permafrost regions will enable more realistic projections of the future climate–carbon system. Currently JULES (the Joint UK Land Environment Simulator) – the land surface model of the UK Earth System Model (UKESM) – uses the standard four-pool RothC soil carbon model. This paper describes a new version of JULES (vn4.3_permafrost) in which the soil vertical dimension is added to the soil carbon model, with a set of four pools in every soil layer. The respiration rate in each soil layer depends on the temperature and moisture conditions in that layer. Cryoturbation/bioturbation processes, which transfer soil carbon between layers, are represented by diffusive mixing. The litter inputs and the soil respiration are both parametrized to decrease with increasing depth. The model now includes a tracer so that selected soil carbon can be labelled and tracked through a simulation. Simulations show an improvement in the large-scale horizontal and vertical distribution of soil carbon over the standard version of JULES (vn4.3). Like the standard version of JULES, the vertically discretized model is still unable to simulate enough soil carbon in the tundra regions. This is in part because JULES underestimates the plant productivity over the tundra, but also because not all of the processes relevant for the accumulation of permafrost carbon, such as peat development, are included in the model. In comparison with the standard model, the vertically discretized model shows a delay in the onset of soil respiration in the spring, resulting in an increased net uptake of carbon during this time. In order to provide a more suitable representation of permafrost carbon for quantifying the permafrost carbon feedback within UKESM, the deep soil carbon in the permafrost region (below 1 m) was initialized using the observed soil carbon. There is now a slight drift in the soil carbon ( < 0.018 % decade−1), but the change in simulated soil carbon over the 20th century, when there is little climate change, is comparable to the original vertically discretized model and significantly larger than the drift
Cosmic superstring trajectories in warped compactifications
We explore the generic motion of cosmic (super)strings when the internal
compact dimensions are warped, using the Klebanov-Strassler solution as a
prototypical throat geometry. We find that there is no dynamical mechanism
which localises the string at the tip of the throat, but rather that the motion
seems to explore both internal and external degrees of freedom democratically.
This indicates that cosmic (super)strings formed by inflationary
brane-antibrane annihilation will have sufficient internal motion for the
gravitational wave signals from the string network to be suppressed relative to
the signal from a `standard' cosmic string network.Comment: 31 pages, 8 figure
The effect of extra dimensions on gravity wave bursts from cosmic string cusps
We explore the kinematical effect of having extra dimensions on the gravity
wave emission from cosmic strings. Additional dimensions both round off cusps,
and reduce the probability of their formation. We recompute the gravity wave
burst, taking into account these two factors, and find a potentially
significant damping on the gravity waves of the strings.Comment: 33 pages, 8 figures, published versio
Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants
Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed
Recommended from our members
Carbon budget for 1.5 and 2oC targets lowered by natural wetland and permafrost feedbacks
Methane emissions from natural wetlands and carbon release from permafrost thaw have a positive feedback on climate, yet are not represented in most state-of-the-art climate models. Furthermore, a fraction of the thawed permafrost carbon is released as methane, enhancing the combined feedback strength. We present simulations with an intermediate complexity climate model which follow prescribed global warming pathways to stabilisation at 1.5°C or 2.0°C above pre-industrial levels by the year 2100, and that incorporates a state-of-the-art global land surface model with updated descriptions of wetland and permafrost carbon release. We demonstrate that the climate feedbacks from those two processes are substantial. Specifically, permissible anthropogenic fossil fuel CO2 emission budgets are reduced by 17-23% (47-56 GtC) for stabilisation at 1.5°C, and 9-13% (52-57 GtC) for 2.0°C stabilisation. In our simulations these feedback processes respond faster at temperatures below 1.5°C, and the differences between the 1.5°C and 2°C targets are disproportionately small. This key finding is due to our interest in transient emission pathways to the year 2100 and does not consider the longer term implications of these feedback processes. We conclude that natural feedback processes from wetlands and permafrost must be considered in assessments of transient emission pathways to limit global warming
Recommended from our members
Increased importance of methane reduction for a 1.5 degree target
To understand the importance of methane on the levels of carbon emission reductions required to achieve temperature goals, a processed-based approach is necessary rather than reliance on the Transient Climate Response to Emissions. We show that plausible levels of methane (CH4) mitigation can make a substantial difference to the feasibility of achieving the Paris climate targets through increasing the allowable carbon emissions. This benefit is enhanced by the indirect effects of CH4 on ozone (O3). Here the differing effects of CH4 and CO2 on land carbon storage, including the effects of surface O3, lead to an additional increase in the allowable carbon emissions with CH4 mitigation. We find a simple robust relationship between the change in the 2100 CH4 concentration and the extra allowable cumulative carbon emissions between now and 2100 (0.27 ± 0.05 GtC per ppb CH4). This relationship is independent of modelled climate sensitivity and precise temperature target, although later mitigation of CH4 reduces its value and thus methane reduction effectiveness. Up to 12% of this increase in allowable emissions is due to the effect of surface ozone. We conclude early mitigation of CH4 emissions would significantly increase the feasibility of stabilising global warming below 1.5C, alongside having co-benefits for human and ecosystem health
Infiltration from the pedon to global grid scales: an overview and outlook for land surface modelling
Infiltration in soils is a key process that partitions precipitation at the land surface in surface runoff and water that enters the soil profile. We reviewed the basic principles of water infiltration in soils and we analyzed approaches commonly used in Land Surface Models (LSMs) to quantify infiltration as well as its numerical implementation and sensitivity to model parameters. We reviewed methods to upscale infiltration from the point to the field, hill slope, and grid cell scale of LSMs. Despite the progress that has been made, upscaling of local scale infiltration processes to the grid scale used in LSMs is still far from being treated rigorously. We still lack a consistent theoretical framework to predict effective fluxes and parameters that control infiltration in LSMs. Our analysis shows, that there is a large variety in approaches used to estimate soil hydraulic properties. Novel, highly resolved soil information at higher resolutions than the grid scale of LSMs may help in better quantifying subgrid variability of key infiltration parameters. Currently, only a few land surface models consider the impact of soil structure on soil hydraulic properties. Finally, we identified several processes not yet considered in LSMs that are known to strongly influence infiltration. Especially, the impact of soil structure on infiltration requires further research. In order to tackle the above challenges and integrate current knowledge on soil processes affecting infiltration processes on land surface models, we advocate a stronger exchange and scientific interaction between the soil and the land surface modelling communities
Recommended from our members
Precision farming and archaeology
With a significant growth in the agricultural technology industry a vast amount of agricultural data is now being collected on farms throughout the world. Farmers aim to utilise these technologies to regularly record and manage the variation of crops and soils within their fields, to reduce inputs, increase yields and enhance environmental sustainability. In this paper we aim to highlight the variety of different data types and methodological processes involved in modern precision farming and explore how potentially interconnected these systems are with the archaeological communit
Gene expression profiling using formalin-fixed paraffin-embedded primary specimens of AIDS-related Lymphomas
- …
