1,237 research outputs found
Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields
Using the Pauli-Villars regularization and arguments from convex analysis, we
construct solutions to the classical time-independent Maxwell equations in
Dirac's vacuum, in the presence of small external electromagnetic sources. The
vacuum is not an empty space, but rather a quantum fluctuating medium which
behaves as a nonlinear polarizable material. Its behavior is described by a
Dirac equation involving infinitely many particles. The quantum corrections to
the usual Maxwell equations are nonlinear and nonlocal. Even if photons are
described by a purely classical electromagnetic field, the resulting vacuum
polarization coincides to first order with that of full Quantum
Electrodynamics.Comment: Final version to appear in Arch. Rat. Mech. Analysi
Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering
We report a Raman scattering investigation of columnar BiFeO3-CoFe2O4
(BFO-CFO) epitaxial thin film nanostructures, where BFO pillars are embedded in
a CFO matrix. The feasibility of a strain analysis is illustrated through an
investigation of two nanostructures with different BFO-CFO ratios. We show that
the CFO matrix presents the same strain state in both nanostructures, while the
strain state of the BFO pillars depends on the BFO/CFO ratio with an increasing
tensile strain along the out-of-plane direction with decreasing BFO content.
Our results demonstrate that Raman scattering allows monitoring strain states
in complex 3D multiferroic pillar/matrix composites.Comment: revised version submitted to Appl. Phys. Let
Self-consistent solution for the polarized vacuum in a no-photon QED model
We study the Bogoliubov-Dirac-Fock model introduced by Chaix and Iracane
({\it J. Phys. B.}, 22, 3791--3814, 1989) which is a mean-field theory deduced
from no-photon QED. The associated functional is bounded from below. In the
presence of an external field, a minimizer, if it exists, is interpreted as the
polarized vacuum and it solves a self-consistent equation.
In a recent paper math-ph/0403005, we proved the convergence of the iterative
fixed-point scheme naturally associated with this equation to a global
minimizer of the BDF functional, under some restrictive conditions on the
external potential, the ultraviolet cut-off and the bare fine
structure constant . In the present work, we improve this result by
showing the existence of the minimizer by a variational method, for any cut-off
and without any constraint on the external field.
We also study the behaviour of the minimizer as goes to infinity
and show that the theory is "nullified" in that limit, as predicted first by
Landau: the vacuum totally kills the external potential. Therefore the limit
case of an infinite cut-off makes no sense both from a physical and
mathematical point of view.
Finally, we perform a charge and density renormalization scheme applying
simultaneously to all orders of the fine structure constant , on a
simplified model where the exchange term is neglected.Comment: Final version, to appear in J. Phys. A: Math. Ge
Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation
We consider a generalized Dirac-Fock type evolution equation deduced from
no-photon Quantum Electrodynamics, which describes the self-consistent
time-evolution of relativistic electrons, the observable ones as well as those
filling up the Dirac sea. This equation has been originally introduced by Dirac
in 1934 in a simplified form. Since we work in a Hartree-Fock type
approximation, the elements describing the physical state of the electrons are
infinite rank projectors. Using the Bogoliubov-Dirac-Fock formalism, introduced
by Chaix-Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989), and recently
established by Hainzl-Lewin-Sere, we prove the existence of global-in-time
solutions of the considered evolution equation.Comment: 12 pages; more explanations added, some final (minor) corrections
include
Directly characterizing the relative strength and momentum dependence of electron-phonon coupling using resonant inelastic x-ray scattering
The coupling between lattice and charge degrees of freedom in condensed
matter materials is ubiquitous and can often result in interesting properties
and ordered phases, including conventional superconductivity, charge density
wave order, and metal-insulator transitions. Angle-resolved photoemission
spectroscopy and both neutron and non-resonant x-ray scattering serve as
effective probes for determining the behavior of appropriate, individual
degrees of freedom -- the electronic structure and lattice excitation, or
phonon dispersion, respectively. However, each provides less direct information
about the mutual coupling between the degrees of freedom, usual through
self-energy effects, which tend to renormalize and broaden spectral features
precisely where the coupling is strong, impacting ones ability to quantitively
characterize the coupling. Here we demonstrate that resonant inelastic x-ray
scattering, or RIXS, can be an effective tool to directly determine the
relative strength and momentum dependence of the electron-phonon coupling in
condensed matter systems. Using a diagrammatic approach for an 8-band model of
copper oxides, we study the contributions from the lowest order diagrams to the
full RIXS intensity for a realistic scattering geometry, accounting for matrix
element effects in the scattering cross-section as well as the momentum
dependence of the electron-phonon coupling vertex. A detailed examination of
these maps offers a unique perspective into the characteristics of
electron-phonon coupling, which complements both neutron and non-resonant x-ray
scattering, as well as Raman and infrared conductivity.Comment: 10 pages, 10 figure
A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case
This article is concerned with the derivation and the mathematical study of a
new mean-field model for the description of interacting electrons in crystals
with local defects. We work with a reduced Hartree-Fock model, obtained from
the usual Hartree-Fock model by neglecting the exchange term. First, we recall
the definition of the self-consistent Fermi sea of the perfect crystal, which
is obtained as a minimizer of some periodic problem, as was shown by Catto, Le
Bris and Lions. We also prove some of its properties which were not mentioned
before. Then, we define and study in details a nonlinear model for the
electrons of the crystal in the presence of a defect. We use formal analogies
between the Fermi sea of a perturbed crystal and the Dirac sea in Quantum
Electrodynamics in the presence of an external electrostatic field. The latter
was recently studied by Hainzl, Lewin, S\'er\'e and Solovej, based on ideas
from Chaix and Iracane. This enables us to define the ground state of the
self-consistent Fermi sea in the presence of a defect. We end the paper by
proving that our model is in fact the thermodynamic limit of the so-called
supercell model, widely used in numerical simulations.Comment: Final version, to appear in Comm. Math. Phy
Lattice and spin excitations in multiferroic h-YMnO3
We used Raman and terahertz spectroscopies to investigate lattice and
magnetic excitations and their cross-coupling in the hexagonal YMnO3
multiferroic. Two phonon modes are strongly affected by the magnetic order.
Magnon excitations have been identified thanks to comparison with neutron
measurements and spin wave calculations but no electromagnon has been observed.
In addition, we evidenced two additional Raman active peaks. We have compared
this observation with the anti-crossing between magnon and acoustic phonon
branches measured by neutron. These optical measurements underly the unusual
strong spin-phonon coupling
Renormalization and asymptotic expansion of Dirac's polarized vacuum
We perform rigorously the charge renormalization of the so-called reduced
Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac
operator, describes atoms and molecules while taking into account vacuum
polarization effects. We consider the total physical density including both the
external density of a nucleus and the self-consistent polarization of the Dirac
sea, but no `real' electron. We show that it admits an asymptotic expansion to
any order in powers of the physical coupling constant \alphaph, provided that
the ultraviolet cut-off behaves as \Lambda\sim e^{3\pi(1-Z_3)/2\alphaph}\gg1.
The renormalization parameter $
Confirmatory factor analysis of the French version of the Anticipatory and Consummatory Interpersonal Pleasure Scale
The Anticipatory and Consummatory Interpersonal Pleasure Scale (ACIPS), a measure specifically designed to assess hedonic capacity for social and interpersonal pleasure, was used to evaluate the presence of social anhedonia in patients as well as the general population. The first goal of this study was to validate the structure of the French version of the ACIPS. The second objective was to verify whether a one, two or three factor solution is most appropriate for the ACIPS scale. The French version of the ACIPS was tested on 263 French-speaking pre-graduate students or professional volunteers. For the confirmatory factor analysis, data were treated as categorical ordinal and all the models were estimated using a robust weighted least squares estimator with adjustments for the mean and variance. Three models were estimated. A one-factor model representing a general undifferentiated “pleasure” latent construct was first tested on the 17 ACIPS items. A two-factor model distinguishing anticipatory-pleasure and consummatory-pleasure was tested next. Finally, a three-factor model including intimate social interactions, group social interactions and social bonding was tested. The one and two-factor models showed a somewhat poor fit to the data. However, the goodness of fit of the three factor model was adequate. These results suggest that individuals who enjoyed interaction in one of these three sub domains were more likely to enjoy doing so in the two other domains. However, on the basis of the comparison between the one and three factor models, these three types interactions may not be considered as indistinguishable. Rather, they represent distinct and theoretically meaningful dimensions. These results show the French version of the ACIPS is a useful and valid scale to measure the capacity of savoring different kinds of social relationships
Magnetic properties of the honeycomb oxide NaCoTeO
We have studied the magnetic properties of NaCoTeO, which
features a honeycomb lattice of magnetic Co ions, through macroscopic
characterization and neutron diffraction on a powder sample. We have shown that
this material orders in a zig-zag antiferromagnetic structure. In addition to
allowing a linear magnetoelectric coupling, this magnetic arrangement displays
very peculiar spatial magnetic correlations, larger in the honeycomb planes
than between the planes, which do not evolve with the temperature. We have
investigated this behavior by Monte Carlo calculations using the
-- model on a honeycomb lattice with a small interplane
interaction. Our model reproduces the experimental neutron structure factor,
although its absence of temperature evolution must be due to additional
ingredients, such as chemical disorder or quantum fluctuations enhanced by the
proximity to a phase boundary.Comment: 9 pages, 13 figure
- …
