632 research outputs found
Illusory Decoherence
If a quantum experiment includes random processes, then the results of
repeated measurements can appear consistent with irreversible decoherence even
if the system's evolution prior to measurement was reversible and unitary. Two
thought experiments are constructed as examples.Comment: 10 pages, 3 figure
Turbulent diffusion and drift in galactic magnetic fields and the explanation of the knee in the cosmic ray spectrum
We reconsider the scenario in which the knee in the cosmic ray spectrum is
explained as due to a change in the escape mechanism of cosmic rays from the
Galaxy from one dominated by transverse diffusion to one dominated by drifts.
We solve the diffusion equations adopting realistic galactic field models and
using diffusion coefficients appropriate for strong turbulence (with a
Kolmogorov spectrum of fluctuations) and consistent with the assumed magnetic
fields. We show that properly taking into account these effects leads to a
natural explanation of the knee in the spectrum, and a transition towards a
heavier composition above the knee is predicted.Comment: 17 pp., 6 figures; revised version with minor changes. To appear in
JHE
Automated Coronal Hole Detection using Local Intensity Thresholding Techniques
We identify coronal holes using a histogram-based intensity thresholding
technique and compare their properties to fast solar wind streams at three
different points in the heliosphere. The thresholding technique was tested on
EUV and X-ray images obtained using instruments onboard STEREO, SOHO and
Hinode. The full-disk images were transformed into Lambert equal-area
projection maps and partitioned into a series of overlapping sub-images from
which local histograms were extracted. The histograms were used to determine
the threshold for the low intensity regions, which were then classified as
coronal holes or filaments using magnetograms from the SOHO/MDI. For all three
instruments, the local thresholding algorithm was found to successfully
determine coronal hole boundaries in a consistent manner. Coronal hole
properties extracted using the segmentation algorithm were then compared with
in situ measurements of the solar wind at 1 AU from ACE and STEREO. Our results
indicate that flux tubes rooted in coronal holes expand super-radially within 1
AU and that larger (smaller) coronal holes result in longer (shorter) duration
high-speed solar wind streams
Using an Observational Framework to investigate adult language input to young children in a naturalistic environment
The correlation between the communicative intent of parents, in terms of their expectation of a response and the response patterns of young children aged 23—25 months during parent—child interactions, was investigated. An Observational Framework was used to code these parameters in interactions between 36 children and their mothers. The children were assigned by cluster analysis to `advanced', `typical' and `delayed' language groups and their responses were coded with respect to the degree of correctness or appropriateness within the interaction. Differences in both the parental response expectations and the children's response patterns across the three clusters are discussed
General Relativistic Mean Field Theory for Rotating Nuclei
We formulate a general relativistic mean field theory for rotating nuclei
starting from the special relativistic model Lagrangian. The
tetrad formalism is adopted to generalize the model to the accelerated frame.Comment: 13 pages, REVTeX, no figures, submitted to Phys. Rev. Lett., the word
`curved' is replaced by `non-inertial' or `accelerated' in several places to
clarify the physical situation interested, some references are added, more
detail discussions are given with omitting some redundant sentence
A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions
We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10−1 mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer
Mechanisms underlying a thalamocortical transformation during active tactile sensation
During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector
Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
Magnetic Coordinate Systems
Geospace phenomena such as the aurora, plasma motion, ionospheric currents
and associated magnetic field disturbances are highly organized by Earth's main
magnetic field. This is due to the fact that the charged particles that
comprise space plasma can move almost freely along magnetic field lines, but
not across them. For this reason it is sensible to present such phenomena
relative to Earth's magnetic field. A large variety of magnetic coordinate
systems exist, designed for different purposes and regions, ranging from the
magnetopause to the ionosphere. In this paper we review the most common
magnetic coordinate systems and describe how they are defined, where they are
used, and how to convert between them. The definitions are presented based on
the spherical harmonic expansion coefficients of the International Geomagnetic
Reference Field (IGRF) and, in some of the coordinate systems, the position of
the Sun which we show how to calculate from the time and date. The most
detailed coordinate systems take the full IGRF into account and define magnetic
latitude and longitude such that they are constant along field lines. These
coordinate systems, which are useful at ionospheric altitudes, are
non-orthogonal. We show how to handle vectors and vector calculus in such
coordinates, and discuss how systematic errors may appear if this is not done
correctly
- …
