16,561 research outputs found
Transformation of UML interaction diagrams into contract specifications for object-oriented testing
Testing is an important means to ensure the quality of software systems. Contract specification can be used to formally specify the cluster level of object-oriented software, which can then be tested using TACCLE, an advanced methodology for object-oriented testing. The use of formal specifications as a testing base has many advantages. However, such specifications are not easily understood and therefore not widely used in the software industry. On the other hand, UML, a semi-formal modeling language, is becoming increasingly popular and widely accepted. In particular, UML interaction diagrams specify the dynamic, interacting behavior among the objects of an object-oriented system. If the transformation of UML interaction diagrams into Contract specifications can be automated, the TACCLE methodology can be applied directly to test object-oriented software at the cluster level. In this paper, a method to transform UML interaction diagrams into Contract specifications is proposed based on the UML meta-model. A prototype has been developed. © 2007 IEEE.published_or_final_versio
Anderson impurity in pseudo-gap Fermi systems
We use the numerical renormalization group method to study an Anderson
impurity in a conduction band with the density of states varying as rho(omega)
\propto |omega|^r with r>0. We find two different fixed points: a local-moment
fixed point with the impurity effectively decoupled from the band and a
strong-coupling fixed point with a partially screened impurity spin. The
specific heat and the spin-susceptibility show powerlaw behaviour with
different exponents in strong-coupling and local-moment regime. We also
calculate the impurity spectral function which diverges (vanishes) with
|omega|^{-r} (|\omega|^r) in the strong-coupling (local moment) regime.Comment: 8 pages, LaTeX, 4 figures includes as eps-file
Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure
Context. DG Tau is a low-mass pre-main sequence star, whose strongly
accreting protoplanetary disk exhibits a so-far enigmatic behavior: its
mid-infrared thermal emission is strongly time-variable, even turning the 10
m silicate feature from emission to absorption temporarily. Aims. We look
for the reason for the spectral variability at high spatial resolution and at
multiple epochs. Methods. We study the temporal variability of the mid-infrared
interferometric signal, observed with the VLTI/MIDI instrument at six epochs
between 2011 and 2014. We fit a geometric disk model to the observed
interferometric signal to obtain spatial information about the disk. We also
model the mid-infrared spectra by template fitting to characterize the profile
and time dependence of the silicate emission. We use physically motivated
radiative transfer modeling to interpret the mid-infrared interferometric
spectra. Results. The inner disk (r<1-3 au) spectra exhibit a 10 m
absorption feature related to amorphous silicate grains. The outer disk (r>1-3
au) spectra show a crystalline silicate feature in emission, similar to the
spectra of comet Hale-Bopp. The striking difference between the inner and outer
disk spectral feature is highly unusual among T Tauri stars. The mid-infrared
variability is dominated by the outer disk. The strength of the silicate
feature changed by more than a factor of two. Between 2011 and 2014 the
half-light radius of the mid-infrared-emitting region decreased from 1.15 to
0.7 au. Conclusions. For the origin of the absorption we discuss four possible
explanations: a cold obscuring envelope, an accretion heated inner disk, a
temperature inversion on the disk surface and a misaligned inner geometry. The
silicate emission in the outer disk can be explained by dusty material high
above the disk plane, whose mass can change with time, possibly due to
turbulence in the disk.Comment: 16 pages, 13 figure
Non-sequential triple ionization in strong fields
We consider the final stage of triple ionization of atoms in a strong
linearly polarized laser field. We propose that for intensities below the
saturation value for triple ionization the process is dominated by the
simultaneous escape of three electrons from a highly excited intermediate
complex. We identify within a classical model two pathways to triple
ionization, one with a triangular configuration of electrons and one with a
more linear one. Both are saddles in phase space. A stability analysis
indicates that the triangular configuration has the larger cross sections and
should be the dominant one. Trajectory simulations within the dominant symmetry
subspace reproduce the experimentally observed distribution of ion momenta
parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
A spatial publish subscribe overlay for massively multiuser virtual environments
Proceedings of the International Conference on Electronics and Information Engineering, 2010, v. 2, p. 314-318Peer-to-peer (P2P) architectures have become popular for designing scalable virtual environments (VEs) in recent years. However, one question that remains is whether a single overlay can be flexible enough to support different types of VEs. We present S-VON, a P2P overlay that attempts this goal by providing spatial publish / subscribe (SPS) services. Besides flexibility, S-VON also aims to be practical and efficient by utilizing super-peers and considering the physical topology (i.e., network distance) to reduce latencies. Our simulations show that super-peers provide a unique design space where both bandwidth usage and latencies can be effectively reduced, such that even a crowded Second Life region can be hosted with residential ADSL. © 2010 IEEE.published_or_final_versio
Spitzer View of Massive Star Formation in the Tidally Stripped Magellanic Bridge
The Magellanic Bridge is the nearest low-metallicity, tidally stripped
environment, offering a unique high-resolution view of physical conditions in
merging and forming galaxies. In this paper we present analysis of candidate
massive young stellar objects (YSOs), i.e., {\it in situ, current} massive star
formation (MSF) in the Bridge using {\it Spitzer} mid-IR and complementary
optical and near-IR photometry. While we definitely find YSOs in the Bridge,
the most massive are , found in the Large
Magellanic Cloud (LMC). The intensity of MSF in the Bridge also appears
decreasing, as the most massive YSOs are less massive than those formed in the
past. To investigate environmental effects on MSF, we have compared properties
of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge
are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical
counterparts, compared to only 56% of LMC sources with the same range of mass,
circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes
are evidently more porous or clumpy in the Bridge's low-metallicity
environment. Second, we have used whole samples of YSOs in the LMC and the
Bridge to estimate the probability of finding YSOs at a given \hi\ column
density, N(HI). We found that the LMC has higher probability than
the Bridge for N(HI) cm, but the trend reverses at
lower N(HI). Investigating whether this lower efficiency relative to HI is due
to less efficient molecular cloud formation, or less efficient cloud collapse,
or both, will require sensitive molecular gas observations.Comment: 41 pages, 20 figures, 6 tables; accepted for publication in ApJ;
several figures are in low resolution due to the size limit here and a high
resolution version can be downloaded via
http://www.astro.virginia.edu/~cc5ye/ms_bridge20140215.pd
A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole
Broad Fe II emission is a prominent feature of the optical and ultraviolet
spectra of quasars. We report on a systematical investigation of optical Fe II
emission in a large sample of 4037 z < 0.8 quasars selected from the Sloan
Digital Sky Survey. We have developed and tested a detailed line-fitting
technique, taking into account the complex continuum and narrow and broad
emission-line spectrum. Our primary goal is to quantify the velocity broadening
and velocity shift of the Fe II spectrum in order to constrain the location of
the Fe II-emitting region and its relation to the broad-line region. We find
that the majority of quasars show Fe II emission that is redshifted, typically
by ~ 400 km/s but up to 2000 km/s, with respect to the systemic velocity of the
narrow-line region or of the conventional broad-line region as traced by the
Hbeta line. Moreover, the line width of Fe II is significantly narrower than
that of the broad component of Hbeta. We show that the magnitude of the Fe II
redshift correlates inversely with the Eddington ratio, and that there is a
tendency for sources with redshifted Fe II emission to show red asymmetry in
the Hbeta line. These characteristics strongly suggest that Fe II originates
from a location different from, and most likely exterior to, the region that
produces most of Hbeta. The Fe II-emitting zone traces a portion of the
broad-line region of intermediate velocities whose dynamics may be dominated by
infall.Comment: 20 pages, 14 figures, accepted for publication in Ap
Teleportation-based realization of an optical quantum two-qubit entangling gate
In recent years, there has been heightened interest in quantum teleportation,
which allows for the transfer of unknown quantum states over arbitrary
distances. Quantum teleportation not only serves as an essential ingredient in
long-distance quantum communication, but also provides enabling technologies
for practical quantum computation. Of particular interest is the scheme
proposed by Gottesman and Chuang [Nature \textbf{402}, 390 (1999)], showing
that quantum gates can be implemented by teleporting qubits with the help of
some special entangled states. Therefore, the construction of a quantum
computer can be simply based on some multi-particle entangled states, Bell
state measurements and single-qubit operations. The feasibility of this scheme
relaxes experimental constraints on realizing universal quantum computation.
Using two different methods we demonstrate the smallest non-trivial module in
such a scheme---a teleportation-based quantum entangling gate for two different
photonic qubits. One uses a high-fidelity six-photon interferometer to realize
controlled-NOT gates and the other uses four-photon hyper-entanglement to
realize controlled-Phase gates. The results clearly demonstrate the working
principles and the entangling capability of the gates. Our experiment
represents an important step towards the realization of practical quantum
computers and could lead to many further applications in linear optics quantum
information processing.Comment: 10 pages, 6 figure
Analytical solutions for two heteronuclear atoms in a ring trap
We consider two heteronuclear atoms interacting with a short-range
potential and confined in a ring trap. By taking the Bethe-ansatz-type
wavefunction and considering the periodic boundary condition properly, we
derive analytical solutions for the heteronuclear system. The eigen-energies
represented in terms of quasi-momentums can then be determined by solving a set
of coupled equations. We present a number of results, which display different
features from the case of identical atoms. Our result can be reduced to the
well-known Lieb-Liniger solution when two interacting atoms have the same
masses.Comment: 6 pages, 6 figure
Polynomial Growth Harmonic Functions on Finitely Generated Abelian Groups
In the present paper, we develop geometric analytic techniques on Cayley
graphs of finitely generated abelian groups to study the polynomial growth
harmonic functions. We develop a geometric analytic proof of the classical
Heilbronn theorem and the recent Nayar theorem on polynomial growth harmonic
functions on lattices \mathds{Z}^n that does not use a representation formula
for harmonic functions. We also calculate the precise dimension of the space of
polynomial growth harmonic functions on finitely generated abelian groups.
While the Cayley graph not only depends on the abelian group, but also on the
choice of a generating set, we find that this dimension depends only on the
group itself.Comment: 15 pages, to appear in Ann. Global Anal. Geo
- …
