35,774 research outputs found
Itinerant ferromagnetism and intrinsic anomalous Hall effect in amorphous iron-germanium
The amorphous iron-germanium system (a-FexGe1-x) lacks long-range structural order and hence lacks a meaningful Brillouin zone. The magnetization of a-FexGe1-x is well explained by the Stoner model for Fe concentrations x above the onset of magnetic order around x=0.4, indicating that the local order of the amorphous structure preserves the spin-split density of states of the Fe-3d states sufficiently to polarize the electronic structure despite k being a bad quantum number. Measurements reveal an enhanced anomalous Hall resistivity ρxyAH relative to crystalline FeGe; this ρxyAH is compared to density-functional theory calculations of the anomalous Hall conductivity to resolve its underlying mechanisms. The intrinsic mechanism, typically understood as the Berry curvature integrated over occupied k states but shown here to be equivalent to the density of curvature integrated over occupied energies in aperiodic materials, dominates the anomalous Hall conductivity of a-FexGe1-x (0.38≤x≤0.61). The density of curvature is the sum of spin-orbit correlations of local orbital states and can hence be calculated with no reference to k space. This result and the accompanying Stoner-like model for the intrinsic anomalous Hall conductivity establish a unified understanding of the underlying physics of the anomalous Hall effect in both crystalline and disordered systems
The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides
pH-responsive polymers have been synthesised by grafting l-valine (PV-75), l-leucine (PL-75) and l-phenylalanine (PP-75) onto the pendant carboxylic acid moieties of a pseudo-peptide, poly(l-lysine iso-phthalamide), at a stoichiometric degree of substitution of 75 mol%. The effect of such modification on the pH-, concentration- and time-dependent cell membrane-disruptive activity of the grafted polymers has been investigated using a haemolysis model. At 0.025 mg mL(−1), the grafted polymers were almost non-haemolytic at pH 7.4, but mediated considerable membrane lysis after 60 min in the pH range characteristic of early endosomes, which ranked in the order: PP-75 > PL-75 > PV-75 > poly(l-lysine iso-phthalamide). PP-75 was 35-fold more lytic on a molar basis than the membrane-lytic peptide melittin. With increasing concentration, the grafted polymers showed an increased ability to lyse cell membranes and caused noticeable membrane disruption at physiological pH. The mechanism of the polymer-mediated membrane destabilisation has been investigated. The in-vitro cytotoxicity of the grafted polymers has been assessed using a propidium iodide fluorescence assay. It has been demonstrated by confocal microscopy that the grafted polymers can induce a significant release of endocytosed materials into the cytoplasm of HeLa cells, which is a feature critical for drug delivery applications
Functional porous composites by blending with solution-processable molecular pores
Porous scrambled cages can be homogenously blended with both functional molecules and non-porous polymers to form functional porous composites materials.</p
Compliance error compensation in robotic-based milling
The paper deals with the problem of compliance errors compensation in
robotic-based milling. Contrary to previous works that assume that the
forces/torques generated by the manufacturing process are constant, the
interaction between the milling tool and the workpiece is modeled in details.
It takes into account the tool geometry, the number of teeth, the feed rate,
the spindle rotation speed and the properties of the material to be processed.
Due to high level of the disturbing forces/torques, the developed compensation
technique is based on the non-linear stiffness model that allows us to modify
the target trajectory taking into account nonlinearities and to avoid the
chattering effect. Illustrative example is presented that deals with
robotic-based milling of aluminum alloy
Influence of Post-Welding Heat Treatment on the Corrosion Behavior of a 2050-T3 Aluminum-Copper-Lithium Alloy Friction Stir Welding Joint
The corrosion behavior of a Friction Stir Welding joint in 2050-T3 Al-Cu-Li alloy was studied in 1 M NaCl solution and the influence of T8 post-welding heat treatment on its corrosion susceptibility was analyzed. After exposure to 1 M NaCl solution, the heat affected zone (HAZ) of the weld without post-welding heat treatment was found to be the most extensively corroded zone with extended intergranular corrosion damage while, following T8 post-welding heat treatment, no intergranular corrosion was observed in the HAZ and the global corrosion behavior of the weld was significantly improved. The corrosion damage observed on the welded joints after immersion in 1 M NaCl solution was compared to that obtained after 750 h Mastmaasis Wet Bottom tests. The same corrosion damage was observed. Various stationary electrochemical tests were carried out on the global welded joint and/or each of the metallurgical zones of the welded joint to understand the corrosion damage observed. TEM observations helped in bringing meaningful elements to analyze the intrinsic electrochemical behavior of the different zones of the weld related to their microstructure. However, galvanic coupling tests showed that galvanic coupling effects between the different zones of the weld were at least partially responsible for its corrosion behavior
Higgs and Dark Matter Hints of an Oasis in the Desert
Recent LHC results suggest a standard model (SM)-like Higgs boson in the
vicinity of 125 GeV with no clear indications yet of physics beyond the SM. At
the same time, the SM is incomplete, since additional dynamics are required to
accommodate cosmological dark matter (DM). In this paper we show that
interactions between weak scale DM and the Higgs which are strong enough to
yield a thermal relic abundance consistent with observation can easily
destabilize the electroweak vacuum or drive the theory into a non-perturbative
regime at a low scale. As a consequence, new physics--beyond the DM
itself--must enter at a cutoff well below the Planck scale and in some cases as
low as O(10 - 1000 TeV), a range relevant to indirect probes of flavor and CP
violation. In addition, this cutoff is correlated with the DM mass and
scattering cross-section in a parameter space which will be probed
experimentally in the near term. Specifically, we consider the SM plus
additional spin 0 or 1/2 states with singlet, triplet, or doublet electroweak
quantum numbers and quartic or Yukawa couplings to the Higgs boson. We derive
explicit expressions for the full two-loop RGEs and one-loop threshold
corrections for these theories.Comment: 29 pages, 13 figure
Speciation and fate of copper in sewage treatment works with and without tertiary treatment: The effect of return flows
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Taylor & Francis.The removal of metals from wastewaters is becoming an important issue, with new environmental quality standards putting increased regulatory pressure on operators of sewage treatment works. The use of additional processes (tertiary treatment) following two-stage biological treatment is frequently seen as a way of improving effluent quality for nutrients and suspended solids, and this study investigates the impact of how back washes from these tertiary processes may impact the removal of copper during primary sedimentation. Seven sites were studied, three conventional two-stage biological treatment, and four with tertiary processes. It was apparent that fluxes of copper in traditional return flows made a significant contribution to the load to the primary treatment tanks, and that<1% of this was in the dissolved phase. Where tertiary processes were used, back wash liquors were also returned to the primary tanks. These return flows had an impact on copper removal in the primary tanks, probably due to their aerobic nature. Returning such aerobic back wash flows to the main process stream after primary treatment may therefore be worth consideration. The opportunity to treat consolidated liquor and sludge flows in side-stream processes to remove toxic elements, as they are relatively concentrated, low volume flow streams, should also be evaluated
Vacuum stability, neutrinos, and dark matter
Motivated by the discovery hint of the Standard Model (SM) Higgs mass around
125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on
Higgs scalar of the SM extensions including neutrinos and dark matter (DM).
Guided by the SM gauge symmetry and the minimal changes in the SM Higgs
potential we consider two extensions of neutrino sector (Type-I and Type-III
seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal
dark matter (MDM)) respectively. The darkon contributes positively to the
function of the Higgs quartic coupling and can stabilize the
SM vacuum up to high scale. Similar to the top quark in the SM we find the
cause of instability is sensitive to the size of new Yukawa couplings between
heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and
Type-III seesaw fermion triplet, two nontrivial representations of
group, will bring the additional positive contributions to the gauge coupling
renormalization group (RG) evolution and would also help to stabilize
the electroweak vacuum up to high scale.Comment: 18 pages, 15 figures; published versio
Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability
The presence of right-handed neutrinos in the type I seesaw mechanism may
lead to significant corrections to the RG evolution of the Higgs self-coupling.
Compared to the Standard Model case, the Higgs mass window can become narrower,
and the cutoff scale become lower. Naively, these effects decrease with
decreasing right-handed neutrino mass. However, we point out that the unknown
Dirac Yukawa matrix may impact the vacuum stability constraints even in the low
scale seesaw case not far away from the electroweak scale, hence much below the
canonical seesaw scale of 10^15 GeV. This includes situations in which
production of right-handed neutrinos at colliders is possible. We illustrate
this within a particular parametrization of the Dirac Yukawas and with explicit
low scale seesaw models. We also note the effect of massive neutrinos on the
top quark Yukawa coupling, whose high energy value can be increased with
respect to the Standard Model case.Comment: 17 pages, 7 figures, minor revisions, version to appear in JHE
- …
