1,233 research outputs found
Observation of a new \chi_b state at ATLAS and a new \Xi_b baryon at CMS
Two recent observations of new b hadrons in pp collisions at \sqrt{s} = 7 TeV
at the Large Hadron Collider (LHC) are presented. The ATLAS collaboration has
observed a new state in radiative transitions to \Upsilon(1S) and \Upsilon(2S)
and interprets this as the first observation of the \chi_b(3P) states. The CMS
collaboration has observed a new b baryon decaying to \Xi_b-\pi+ (plus charge
conjugates). This is interpreted as a neutral J^P = 3/2^+ \Xi_b* baryon.Comment: 10 pages, 6 figures, Presented at Flavor Physics and CP Violation
(FPCP 2012), Hefei, China, May 21-25, 201
Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans.
The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration
Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG.
The genetically encoded photosensitizer miniSOG (mini Singlet Oxygen Generator) can be used to kill cells in C. elegans. miniSOG generates the reactive oxygen species (ROS) singlet oxygen after illumination with blue light. Illumination of neurons expressing miniSOG targeted to the outer mitochondrial membrane (mito-miniSOG) causes neuronal death. To enhance miniSOG's efficiency as an ablation tool in multiple cell types we tested alternative targeting signals. We find that membrane targeted miniSOG allows highly efficient cell killing. When combined with a point mutation that increases miniSOG's ROS generation, membrane targeted miniSOG can ablate neurons in less than one tenth the time of mito-miniSOG. We extend the miniSOG ablation technique to non-neuronal tissues, revealing an essential role for the epidermis in locomotion. These improvements expand the utility and throughput of optogenetic cell ablation in C. elegans
Learning to generate one-sentence biographies from Wikidata
We investigate the generation of one-sentence Wikipedia biographies from
facts derived from Wikidata slot-value pairs. We train a recurrent neural
network sequence-to-sequence model with attention to select facts and generate
textual summaries. Our model incorporates a novel secondary objective that
helps ensure it generates sentences that contain the input facts. The model
achieves a BLEU score of 41, improving significantly upon the vanilla
sequence-to-sequence model and scoring roughly twice that of a simple template
baseline. Human preference evaluation suggests the model is nearly as good as
the Wikipedia reference. Manual analysis explores content selection, suggesting
the model can trade the ability to infer knowledge against the risk of
hallucinating incorrect information
Recommended from our members
Corrigendum: A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System.
[This corrects the article DOI: 10.3389/fncir.2018.00094.]
A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System.
The "connectome," a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond
Genetic Suppression of Basement Membrane Defects in Caenorhabditis elegans by Gain of Function in Extracellular Matrix and Cell-Matrix Attachment Genes.
Basement membranes are extracellular matrices essential for embryonic development in animals. Peroxidasins are extracellular peroxidases implicated in the unique sulfilimine cross-links between type IV basement membrane collagens. Loss of function in the Caenorhabditis elegans peroxidasin PXN-2 results in fully penetrant embryonic or larval lethality. Using genetic suppressor screening, we find that the requirement for PXN-2 in development can be bypassed by gain of function in multiple genes encoding other basement membrane components, or proteins implicated in cell-matrix attachment. We identify multiple alleles of let-805, encoding the transmembrane protein myotactin, which suppress phenotypes of pxn-2 null mutants and of other basement membrane mutants such as F-spondin/spon-1 These let-805 suppressor alleles cause missense alterations in two pairs of FNIII repeats in the extracellular domain; they act dominantly and have no detectable phenotypes alone, suggesting they cause gain of function. We also identify suppressor missense mutations affecting basement membrane components type IV collagen (emb-9, let-2) and perlecan (unc-52), as well as a mutation affecting spectraplakin (vab-10), a component of the epidermal cytoskeleton. These suppressor alleles do not bypass the developmental requirement for core structural proteins of the basement membrane such as laminin or type IV collagen. In conclusion, putative gain-of-function alterations in matrix proteins or in cell-matrix receptors can overcome the requirement for certain basement membrane proteins in embryonic development, revealing previously unknown plasticity in the genetic requirements for the extracellular matrix
- …
