1,253 research outputs found
Visible Sector Supersymmetry Breaking Revisited
We revisit the possibility of "visible sector" SUSY models: models which are
straightforward renormalizable extensions of the Minimal Supersymmetric
Standard Model (MSSM), where SUSY is broken at tree level. Models of this type
were abandoned twenty years ago due to phenomenological problems, which we
review. We then demonstrate that it is possible to construct simple
phenomenologically viable visible sector SUSY models. Such models are indeed
very constrained, and have some inelegant features. They also have interesting
and distinctive phenomenology. Our models predict light gauginos and very heavy
squarks and sleptons. The squarks and sleptons may not be observable at the
LHC. The LSP is a stable very light gravitino with a significant Higgsino
admixture. The NLSP is mostly Bino. The Higgs boson is naturally heavy. Proton
decay is sufficently and naturally suppressed, even for a cutoff scale as low
as 10^8 GeV. The lightest particle of the O'Raifeartaigh sector (the LOP) is
stable, and is an interesting cold dark matter candidate.Comment: 23 pages, 3 figures, LaTe
Absence of hole pairing in a simple t-J model on the Shastry-Sutherland lattice
The Shastry-Sutherland model is a two-dimensional frustrated spin model whose
ground state is a spin gap state. We study this model doped with one and two
holes on a 32-site lattice using exact diagonalization. When t'>0, we find that
the diagonal dimer order that exists at half-filling are retained at these
moderate doping levels. No other order is found to be favored on doping. The
holes are strongly repulsive unless the hopping terms are unrealistically
small. Therefore, the existence of a spin gap at half-filling does not
guarantee hole-pairing in the present case
Secondary education reform in Lesotho and Zimbabwe and the needs of rural girls: Pronouncements, policy and practice
Analysis of the educational needs of rural girls in Lesotho and Zimbabwe suggests a number of shortcomings in the current form of secondary education, and ways in which it might be modified so as to serve this sizeable group of students better. Several of the shortcomings, notably in relation to curricular irrelevance and excessive focus on examinations, have long been recognised, including by politicians. Yet political pronouncements are seldom translated into policy, and even where policy is formulated, reforms are seldom implemented in schools. This paper makes use of interviews with educational decision-makers in the two southern African countries and a range of documentary sources to explore why, despite the considerable differences between the two contexts, much needed educational reforms have been implemented in neither
GPU-Accelerated Large-Eddy Simulation of Turbulent Channel Flows
High performance computing clusters that are augmented with cost and power efficient graphics processing unit (GPU) provide new opportunities to broaden the use of large-eddy simulation technique to study high Reynolds number turbulent flows in fluids engineering applications. In this paper, we extend our earlier work on multi-GPU acceleration of an incompressible Navier-Stokes solver to include a large-eddy simulation (LES) capability. In particular, we implement the Lagrangian dynamic subgrid scale model and compare our results against existing direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 180. Overall, our LES results match fairly well with the DNS data. Our results show that the Reτ = 180 case can be entirely simulated on a single GPU, whereas higher Reynolds cases can benefit from a GPU cluster
MSSM Higgs sector CP violation at photon colliders: Revisited
We present a comprehensive analysis on the MSSM Higgs sector CP violation at
photon colliders including the chargino contributions as well as the
contributions of other charged particles. The chargino loop contributions can
be important for the would-be CP odd Higgs production at photon colliders.
Polarization asymmetries are indispensable in determining the CP properties of
neutral Higgs bosons.Comment: 24 pages, 40 figure
HI in the Outskirts of Nearby Galaxies
The HI in disk galaxies frequently extends beyond the optical image, and can
trace the dark matter there. I briefly highlight the history of high spatial
resolution HI imaging, the contribution it made to the dark matter problem, and
the current tension between several dynamical methods to break the disk-halo
degeneracy. I then turn to the flaring problem, which could in principle probe
the shape of the dark halo. Instead, however, a lot of attention is now devoted
to understanding the role of gas accretion via galactic fountains. The current
cold dark matter theory has problems on galactic scales, such as
the core-cusp problem, which can be addressed with HI observations of dwarf
galaxies. For a similar range in rotation velocities, galaxies of type Sd have
thin disks, while those of type Im are much thicker. After a few comments on
modified Newtonian dynamics and on irregular galaxies, I close with statistics
on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
Operator renewal theory and mixing rates for dynamical systems with infinite measure
We develop a theory of operator renewal sequences in the context of infinite
ergodic theory. For large classes of dynamical systems preserving an infinite
measure, we determine the asymptotic behaviour of iterates of the
transfer operator. This was previously an intractable problem.
Examples of systems covered by our results include (i) parabolic rational
maps of the complex plane and (ii) (not necessarily Markovian) nonuniformly
expanding interval maps with indifferent fixed points.
In addition, we give a particularly simple proof of pointwise dual ergodicity
(asymptotic behaviour of ) for the class of systems under
consideration.
In certain situations, including Pomeau-Manneville intermittency maps, we
obtain higher order expansions for and rates of mixing. Also, we obtain
error estimates in the associated Dynkin-Lamperti arcsine laws.Comment: Preprint, August 2010. Revised August 2011. After publication, a
minor error was pointed out by Kautzsch et al, arXiv:1404.5857. The updated
version includes minor corrections in Sections 10 and 11, and corresponding
modifications of certain statements in Section 1. All main results are
unaffected. In particular, Sections 2-9 are unchanged from the published
versio
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
- …
