16 research outputs found

    The non-coding transcriptome as a dynamic regulator of cancer metastasis.

    Get PDF
    Since the discovery of microRNAs, non-coding RNAs (NC-RNAs) have increasingly attracted the attention of cancer investigators. Two classes of NC-RNAs are emerging as putative metastasis-related genes: long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs). LncRNAs orchestrate metastatic progression through several mechanisms, including the interaction with epigenetic effectors, splicing control and generation of microRNA-like molecules. In contrast, snoRNAs have been long considered "housekeeping" genes with no relevant function in cancer. However, recent evidence challenges this assumption, indicating that some snoRNAs are deregulated in cancer cells and may play a specific role in metastasis. Interestingly, snoRNAs and lncRNAs share several mechanisms of action, and might synergize with protein-coding genes to generate a specific cellular phenotype. This evidence suggests that the current paradigm of metastatic progression is incomplete. We propose that NC-RNAs are organized in complex interactive networks which orchestrate cellular phenotypic plasticity. Since plasticity is critical for cancer cell metastasis, we suggest that a molecular interactome composed by both NC-RNAs and proteins orchestrates cancer metastasis. Interestingly, expression of lncRNAs and snoRNAs can be detected in biological fluids, making them potentially useful biomarkers. NC-RNA expression profiles in human neoplasms have been associated with patients' prognosis. SnoRNA and lncRNA silencing in pre-clinical models leads to cancer cell death and/or metastasis prevention, suggesting they can be investigated as novel therapeutic targets. Based on the literature to date, we critically discuss how the NC-RNA interactome can be explored and manipulated to generate more effective diagnostic, prognostic, and therapeutic strategies for metastatic neoplasms

    Cancer recurrence times from a branching process model

    Get PDF
    As cancer advances, cells often spread from the primary tumor to other parts of the body and form metastases. This is the main cause of cancer related mortality. Here we investigate a conceptually simple model of metastasis formation where metastatic lesions are initiated at a rate which depends on the size of the primary tumor. The evolution of each metastasis is described as an independent branching process. We assume that the primary tumor is resected at a given size and study the earliest time at which any metastasis reaches a minimal detectable size. The parameters of our model are estimated independently for breast, colorectal, headneck, lung and prostate cancers. We use these estimates to compare predictions from our model with values reported in clinical literature. For some cancer types, we find a remarkably wide range of resection sizes such that metastases are very likely to be present, but none of them are detectable. Our model predicts that only very early resections can prevent recurrence, and that small delays in the time of surgery can significantly increase the recurrence probability.Comment: 26 pages, 9 figures, 4 table

    Clinical management of breast cancer heterogeneity

    No full text
    Traditionally, intertumour heterogeneity in breast cancer has been documented in terms of different histological subtypes, treatment sensitivity profiles, and clinical outcomes among different patients. Results of high-throughput molecular profiling studies have subsequently revealed the true extent of this heterogeneity. Further complicating this scenario, the heterogeneous expression of the oestrogen receptor (ER), progesterone receptor (PR), and HER2 has been reported in different areas of the same tumour. Furthermore, discordance, in terms of ER, PR and HER2 expression, has also been reported between primary tumours and their matched metastatic lesions. High-throughput molecular profiling studies have confirmed that spatial and temporal intratumour heterogeneity of breast cancers exist at a level beyond common expectations. We describe the different levels of tumour heterogeneity, and discuss the strategies that can be adopted by clinicians to tackle treatment response and resistance issues associated with such heterogeneity, including a rationally selected combination of agents that target driver mutations, the targeting of deleterious passenger mutations, identifying and eradicating the 'lethal' clone, targeting the tumour microenvironment, or using adaptive treatments and immunotherapy. The identification of the most-appropriate strategies and their implementation in the clinic will prove highly challenging and necessitate the adoption of radically new practices for the optimal clinical management of breast malignancies.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore