220 research outputs found

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.

    Get PDF
    OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock

    Glycolysis and Fatty Acid Oxidation Inhibition Improves Survival in Glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most aggressive adult glioma with a median survival of 14 months. While standard treatments (safe maximal resection, radiation, and temozolomide chemotherapy) have increased the median survival in favorable O(6)-methylguanine-DNA methyltransferase (MGMT)-methylated GBM (~21 months), a large proportion of patients experience a highly debilitating and rapidly fatal disease. This study examined GBM cellular energetic pathways and blockade using repurposed drugs: the glycolytic inhibitor, namely dicholoroacetate (DCA), and the partial fatty acid oxidation (FAO) inhibitor, namely ranolazine (Rano). Gene expression data show that GBM subtypes have similar glucose and FAO pathways, and GBM tumors have significant upregulation of enzymes in both pathways, compared to normal brain tissue (p < 0.01). DCA and the DCA/Rano combination showed reduced colony-forming activity of GBM and increased oxidative stress, DNA damage, autophagy, and apoptosis in vitro. In the orthotopic Gl261 and CT2A syngeneic murine models of GBM, DCA, Rano, and DCA/Rano increased median survival and induced focal tumor necrosis and hemorrhage. In conclusion, dual targeting of glycolytic and FAO metabolic pathways provides a viable treatment that warrants further investigation concurrently or as an adjuvant to standard chemoradiation for GBM

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    The molecular landscape and associated clinical experience in infant medulloblastoma: prognostic significance of second-generation subtypes

    Get PDF
    Aims: Biomarker‐driven therapies have not been developed for infant medulloblastoma (iMB). We sought to robustly sub‐classify iMB, and proffer strategies for personalized, risk‐adapted therapies. Methods: We characterized the iMB molecular landscape, including second‐generation subtyping, and the associated retrospective clinical experience, using large independent discovery/validation cohorts (n = 387). Results: iMBGrp3 (42%) and iMBSHH (40%) subgroups predominated. iMBGrp3 harboured second‐generation subtypes II/III/IV. Subtype II strongly associated with large‐cell/anaplastic pathology (LCA; 23%) and MYC amplification (19%), defining a very‐high‐risk group (0% 10yr overall survival (OS)), which progressed rapidly on all therapies; novel approaches are urgently required. Subtype VII (predominant within iMBGrp4) and subtype IV tumours were standard risk (80% OS) using upfront CSI‐based therapies; randomized‐controlled trials of upfront radiation‐sparing and/or second‐line radiotherapy should be considered. Seventy‐five per cent of iMBSHH showed DN/MBEN histopathology in discovery and validation cohorts (P < 0.0001); central pathology review determined diagnosis of histological variants to WHO standards. In multivariable models, non‐DN/MBEN pathology was associated significantly with worse outcomes within iMBSHH. iMBSHH harboured two distinct subtypes (iMBSHH‐I/II). Within the discriminated favourable‐risk iMBSHH DN/MBEN patient group, iMBSHH‐II had significantly better progression‐free survival than iMBSHH‐I, offering opportunities for risk‐adapted stratification of upfront therapies. Both iMBSHH‐I and iMBSHH‐II showed notable rescue rates (56% combined post‐relapse survival), further supporting delay of irradiation. Survival models and risk factors described were reproducible in independent cohorts, strongly supporting their further investigation and development. Conclusions: Investigations of large, retrospective cohorts have enabled the comprehensive and robust characterization of molecular heterogeneity within iMB. Novel subtypes are clinically significant and subgroup‐dependent survival models highlight opportunities for biomarker‐directed therapies

    The Contribution of Cancer Incidence, Stage at Diagnosis and Survival to Racial Differences in Years of Life Expectancy

    Get PDF
    African Americans have higher cancer mortality rates than whites. Understanding the relative contribution of cancer incidence, stage at diagnosis and survival after diagnosis to the racial gap in life expectancy has important implications for directing future health disparity interventions toward cancer prevention, screening and treatment. We estimated the degree to which higher cancer mortality among African Americans is due to higher incidence rates, later stage at diagnosis or worse survival after diagnosis. Stochastic model of cancer incidence and survival after diagnosis. Surveillance and Epidemiology End Result cancer registry and National Health Interview Survey data. Life expectancy if African Americans had the same cancer incidence, stage and survival after diagnosis as white adults. African-American men and women live 1.47 and 0.91 fewer years, respectively, than whites as the result of all cancers combined. Among men, racial differences in cancer incidence, stage at diagnosis and survival after diagnosis account for 1.12 (95% CI: 0.52 to 1.36), 0.17 (95% CI: −0.03 to 0.33) and 0.21 (95% CI: 0.05 to 0.34) years of the racial gap in life expectancy, respectively. Among women, incidence, stage and survival after diagnosis account for 0.41 (95% CI: −0.29 to 0.60), 0.26 (95% CI: −0.06 to 0.40) and 0.31 (95% CI: 0.05 to 0.40) years, respectively. Differences in stage had a smaller impact on the life expectancy gap compared with the impact of incidence. Differences in cancer survival after diagnosis had a significant impact for only two cancers—breast (0.14 years; 95% CI: 0.05 to 0.16) and prostate (0.05 years; 95% CI 0.01 to 0.09). In addition to breast and colorectal cancer screening, national efforts to reduce disparities in life expectancy should also target cancer prevention, perhaps through smoking cessation, and differences in survival after diagnosis among persons with breast and prostate cancer

    Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity

    Get PDF
    The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg0.8/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed intake, growth, and behaviour. Fish were hand-fed three times a day during the dark phase of the day until apparent satiation. During six different days, behaviour was recorded twice daily during 3 minutes by direct observations. Total swimming activity, frequency of burying and of escapes were recorded. At the beginning and end of the growth period, two sequential behavioural tests were performed: “Novel Environment” and “Light Avoidance”. Fish housed individually still exhibited pronounced variation in feed intake (CV = 23%), growth (CV = 25%) and behavior (CV = 100%). Differences in feed intake account for 79% of the observed individual differences in growth of sole. Fish with higher variation in feed intake between days and between meals within days had significantly a lower total feed intake (r = −0.65 and r = −0.77) and growth. Active fish showed significantly higher feed intake (r = 0.66) and growth (r = 0.58). Boldness during both challenge tests was related to fast growth: (1) fish which reacted with a lower latency time to swim in a novel environment had significantly higher feed intake (r = −0.55) and growth (r = −0.66); (2) fish escaping during the light avoidance test tended to show higher feed intake (P<0.1) and had higher growth (P<0.05). In conclusion, feeding consistency, swimming activity in the tank, and boldness during behavioral tests are related to feed intake and growth of sole in captivity

    Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases

    Get PDF
    Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.Published versionThe authors thank the UK MS Society for financial support (grant number: C008-16.1). DRO was funded by an MRC Clinician Scientist Award (MR/N008219/1). P.M.M. acknowledges generous support from Edmond J Safra Foundation and Lily Safra, the NIHR Senior Investigator programme and the UK Dementia Research Institute which receives its funding from DRI Ltd., funded by the UK Medical Research Council, Alzheimer’s Society, and Alzheimer’s Research UK. P.M.M. and D.R.O. thank the Imperial College Healthcare Trust-NIHR Biomedical Research Centre for infrastructure support and the Medical Research Council for support of TSPO studies (MR/N016343/1). E.A. was supported by the ALS Stichting (grant “The Dutch ALS Tissue Bank”). P.M. and B.B.T. are funded by the Swiss National Science Foundation (projects 320030_184713 and 310030_212322, respectively). S.T. was supported by an “Early Postdoc.Mobility” scholarship (P2GEP3_191446) from the Swiss National Science Foundation, a “Clinical Medicine Plus” scholarship from the Prof Dr. Max Cloëtta Foundation (Zurich, Switzerland), from the Jean et Madeleine Vachoux Foundation (Geneva, Switzerland) and from the University Hospitals of Geneva. This work was funded by NIH grants U01AG061356 (De Jager/Bennett), RF1AG057473 (De Jager/Bennett), and U01AG046152 (De Jager/Bennett) as part of the AMP-AD consortium, as well as NIH grants R01AG066831 (Menon) and U01AG072572 (De Jager/St George-Hyslop)

    Improved Learning and Memory in Aged Mice Deficient in Amyloid β-Degrading Neutral Endopeptidase

    Get PDF
    BACKGROUND: Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-beta (Abeta) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. METHODOLOGY/PRINCIPAL FINDINGS: We found that while endogenous Abeta concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Abeta deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Abeta degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. CONCLUSIONS/SIGNIFICANCE: Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases
    corecore