167 research outputs found

    Proposal for an Adaptive Recommender System to Support Teaching Practices

    Get PDF
    The shift to online learning, which has grown by 70% in recent years, has brought unprecedented challenges to the educational landscape. This emphasizes the urgent need for innovative solutions that address the evolving needs of both educators and students. This study introduces a novel adaptive recommender system for educators, which has demonstrated significant improvements in teaching effectiveness through personalized strategy recommendations. Preliminary findings reveal a notable increase in student engagement and comprehension, underscoring the system’s potential to revolutionize educational practices

    Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus

    Get PDF
    Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.National Institutes of Health (U.S.

    Wage returns to mid-career investments in job training through employer supported course enrollment: evidence for Canada

    Get PDF
    Using longitudinal data for Canada, we analyze the incidence and wage returns to employer supported course enrollment for men and women. Availability of confidential data, along with a relatively rich set of observable covariates, lead us to the estimation of difference-in-differences matching models of the effect of employer supported course enrolment on wages. The estimated average treatment effects on the treated range from 5.5 to 7.2 percent for men and 7.1 to 9.0 for women. While high-skilled workers show disproportionately higher rates of participation in employer-supported training, we observe no wage premiums for these types of workers. Statistically significant positive wage returns are found, on the other hand, for low-skilled workers. JEL codes: C14, I20, J24, J31, M5

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Temperature- and Touch-Sensitive Neurons Couple CNG and TRPV Channel Activities to Control Heat Avoidance in Caenorhabditis elegans

    Get PDF
    Background: Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding,35uC and also senses changes in its environmental temperature in the range between 15 and 25uC. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. Methodology/Principal Findings: We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicinsensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Conclusions/Significance: Our results identify distinct thermal responses mediated by a single neuron, but also show tha

    C-Terminus Glycans with Critical Functional Role in the Maturation of Secretory Glycoproteins

    Get PDF
    The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs - one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I

    Chagas Cardiomyopathy Manifestations and Trypanosoma cruzi Genotypes Circulating in Chronic Chagasic Patients

    Get PDF
    Chagas disease caused by Trypanosoma cruzi is a complex disease that is endemic and an important problem in public health in Latin America. The T. cruzi parasite is classified into six discrete taxonomic units (DTUs) based on the recently proposed nomenclature (TcI, TcII, TcIII, TcIV, TcV and TcVI). The discovery of genetic variability within TcI showed the presence of five genotypes (Ia, Ib, Ic, Id and Ie) related to the transmission cycle of Chagas disease. In Colombia, TcI is more prevalent but TcII has also been reported, as has mixed infection by both TcI and TcII in the same Chagasic patient. The objectives of this study were to determine the T. cruzi DTUs that are circulating in Colombian chronic Chagasic patients and to obtain more information about the molecular epidemiology of Chagas disease in Colombia. We also assessed the presence of electrocardiographic, radiologic and echocardiographic abnormalities with the purpose of correlating T. cruzi genetic variability and cardiac disease. Molecular characterization was performed in Colombian adult chronic Chagasic patients based on the intergenic region of the mini-exon gene, the 24Sα and 18S regions of rDNA and the variable region of satellite DNA, whereby the presence of T.cruzi I, II, III and IV was detected. In our population, mixed infections also occurred, with TcI-TcII, TcI-TcIII and TcI-TcIV, as well as the existence of the TcI genotypes showing the presence of genotypes Ia and Id. Patients infected with TcI demonstrated a higher prevalence of cardiac alterations than those infected with TcII. These results corroborate the predominance of TcI in Colombia and show the first report of TcIII and TcIV in Colombian Chagasic patients. Findings also indicate that Chagas cardiomyopathy manifestations are more correlated with TcI than with TcII in Colombia

    Association of common ATM variants with familial breast cancer in a South American population

    Get PDF
    Background: The ATM gene has been frequently involved in hereditary breast cancer as a low-penetrance susceptibility gene but evidence regarding the role of ATM as a breast cancer susceptibility gene has been contradictory. Methods: In this study, a full mutation analysis of the ATM gene was carried out in patients from 137 Chilean breast cancer families, of which 126 were BRCA1/2 negatives and 11 BRCA1/2 positives. We further perform a case-control study between the subgroup of 126 cases BRCA1/2 negatives and 200 controls for the 5557G > A missense variant and the IVS38-8T > C and the IVS24-9delT polymorphisms. Results: In the full mutation analysis we detected two missense variants and eight intronic polymorphisms. Carriers of the variant IVS24-9delT, or IVS38-8T > C, or 5557G > A showed an increase in breast cancer risk. The higher significance was observed in the carriers of IVS38-8T > C (OR = 3.09 [95% CI 1.11-8.59], p = 0.024). The IVS24-9 T/(-T), IVS38-8 T/C, 5557 G/A composite genotype confered a 3.19 fold increase in breast cancer risk (OR = 3.19 [ 95% CI 1.16-8.89], p = 0.021). The haplotype estimation suggested a strong linkage disequilibrium between the three markers (D' = 1). We detected only three haplotypes in the cases and control samples, some of these may be founder haplotypes in the Chilean population. Conclusion: The IVS24-9 T/(-T), IVS38-8 T/C, 5557 G/A composite genotype alone or in combination with certain genetic background and/or environmental factors, could modify the cancer risk by increasing genetic inestability or by altering the effect of the normal DNA damage response

    HDL cholesterol efflux capacity in rheumatoid arthritis patients: contributing factors and relationship with subclinical atherosclerosis

    Get PDF
    Background: Lipid profiles appear to be altered in rheumatoid arthritis (RA) patients because of disease activity and inflammation. Cholesterol efflux capacity (CEC), which is the ability of high-density lipoprotein cholesterol to accept cholesterol from macrophages, has been linked not only to cardiovascular events in the general population but also to being impaired in patients with RA. The aim of this study was to establish whether CEC is related to subclinical carotid atherosclerosis in patients with RA. Methods: We conducted a cross-sectional study that encompassed 401 individuals, including 178 patients with RA and 223 sex-matched control subjects. CEC, using an in vitro assay, lipoprotein serum concentrations, and standard lipid profile, was assessed in patients and control subjects. Carotid intima-media thickness (CIMT) and carotid plaques were assessed in patients with RA. A multivariable analysis was performed to evaluate the relationship of CEC with RA-related data, lipid profile, and subclinical carotid atherosclerosis. Results: Mean (SD) CEC was not significantly different between patients with RA (18.9 ± 9.0%) and control subjects (16.9 ± 10.4%) (p = 0.11). Patients with RA with low (? coefficient ?5.2 [?10.0 to 0.3]%, p = 0.039) and moderate disease activity (? coefficient ?4.6 [?8.5 to 0.7]%, p = 0.020) were associated with lower levels of CEC than patients in remission. Although no association with CIMT was found, higher CEC was independently associated with a lower risk for the presence of carotid plaque in patients with RA (odds ratio 0.94 [95% CI 0.89?0.98], p = 0.015). Conclusions: CEC is independently associated with carotid plaque in patients with RA
    corecore