179 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Evolution of bisphosphonate-related osteonecrosis of the jaw in patients with multiple myeloma and Waldenstrom's macroglobulinemia: a retrospective multicentric study

    Get PDF
    Bisphosphonates (BPs) are used intravenously to treat cancer-related conditions for the prevention of pathological fractures. Osteonecrosis of the jaw (BRONJ) is a rare complication reported in 4–15% of patients. We studied, retrospectively, 55 patients with multiple myeloma or Waldenstrom's macroglobulinemia followed up from different haematological departments who developed BRONJ. All patients were treated with BPs for bone lesions and/or fractures. The most common trigger for BRONJ was dental alveolar surgery. After a median observation of 26 months, no death caused by BRONJ complication was reported. In all, 51 patients were treated with antibiotic therapy, and in 6 patients, this was performed in association with surgical debridement of necrotic bone, in 16 with hyperbaric O2 therapy/ozonotherapy and curettage and in 12 with sequestrectomy and O2/hyperbaric therapy. Complete response was observed in 20 cases, partial response in 21, unchanged in 9 and worsening in 3. The association of surgical treatment with antibiotic therapy seems to be more effective in eradicating the necrotic bone than antibiotic treatment alone. O2 hyperbaric/ozonotherapy is a very effective treatment. The cumulative dosage of BPs is important for the evolution of BRONJ. Because the most common trigger for BRONJ was dental extractions, all patients, before BP treatment, must achieve an optimal periodontal health

    Prevalence of bisphosphonate associated osteonecrosis of the jaws in multiple myeloma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphosphonate-associated osteonecrosis of the jaws (BP-ONJ) is an adverse effect of bisphosphonate treatment with varying reported incidence rates.</p> <p>Methods</p> <p>In two neighboring German cities, prevalence and additional factors of the development of BP-ONJ in multiple myeloma patients with bisphosphonates therapy were recorded using a retrospective (RS) and cross-sectional study (CSS) design. For the RS, all patients treated from Jan. 2000 - Feb. 2006 were contacted by letter. In the CSS, all patients treated from Oct. 2006 - Mar. 2008 had a physical and dental examination. Additionally, a literature review was conducted to evaluate all articles reporting on BP-ONJ prevalence. PubMed search terms were: bisphosphonat, diphosphonate, osteonecrosis, prevalence and incidence.</p> <p>Results</p> <p>In the RS, data from 81 of 161 patients could be obtained; four patients (4.9%) developed BP-ONJ. In the CSS, 16 of 78 patients (20.5%) developed BP-ONJ. All patients with BP-ONJ had received zoledronate; 12 of these had had additional bisphosphonates. All except one had an additional trigger factor (tooth extraction [n = 14], dental surgical procedure [n = 2], sharp mylohyoid ridge [n = 3]).</p> <p>Conclusion</p> <p>The prevalence of BP-ONJ may have been underestimated to date. The oral examination of all patients in this CSS might explain the higher prevalence, since even early asymptomatic stages of BP-ONJ and previously unnoticed symptomatic BP-ONJ were recorded. Since nearly all patients with BP-ONJ had an additional trigger factor, oral hygiene and dental care might help to reduce BP-ONJ incidence.</p

    The impact of comorbidity and stage on ovarian cancer mortality: A nationwide Danish cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of ovarian cancer increases sharply with age, and many elderly patients have coexisting diseases. If patients with comorbidities are diagnosed with advanced stages, this would explain the poor survival observed among ovarian cancer patients with severe comorbidity. Our aims were to examine the prevalence of comorbidity according to stage of cancer at diagnosis, to estimate the impact of comorbidity on survival, and to examine whether the impact of comorbidity on survival varies by stage.</p> <p>Methods</p> <p>From the Danish Cancer Registry we identified 5,213 patients (> 15 years old) with ovarian cancer diagnosed from 1995 to 2003. We obtained information on comorbidities from the Danish National Hospital Discharge Registry. Vital status was determined through linkage to the Civil Registration System. We estimated the prevalence of comorbidity by stage and computed absolute survival and relative mortality rate ratios (MRRs) by comorbidity level (Charlson Index score 0, 1–2, 3+), using patients with Charlson Index score 0 as the reference group. We then stratified by stage and computed the absolute survival and MRRs according to comorbidity level, using patients with Charlson score 0 and localized tumour/FIGO I as the reference group. We adjusted for age and calendar time.</p> <p>Results</p> <p>Comorbidity was more common among patients with an advanced stage of cancer. One- and five-year survival was higher in patients without comorbidity than in patients with registered comorbidity. After adjustment for age and calendar time, one-year MRRs declined from 1.8 to 1.4 and from 2.7 to 2.0, for patients with Charlson scores 1–2 and 3+, respectively. After adjustment for stage, the MRRs further declined to 1.3 and 1.8, respectively. Five-year MRRs declined similarly after adjustment for age, calendar time, and stage. The impact of severe comorbidity on mortality varied by stage, particularly among patients with tumours with regional spread/FIGO-stages II and III.</p> <p>Conclusion</p> <p>The presence of severe comorbidity was associated with an advanced stage of ovarian cancer. Mortality was higher among patients with comorbidities and the impact of comorbidity varied by stage.</p

    Versatile Assays for High Throughput Screening for Activators or Inhibitors of Intracellular Proteases and Their Cellular Regulators

    Get PDF
    BACKGROUND: Intracellular proteases constitute a class of promising drug discovery targets. Methods for high throughput screening against these targets are generally limited to in vitro biochemical assays that can suffer many technical limitations, as well as failing to capture the biological context of proteases within the cellular pathways that lead to their activation. METHODS #ENTITYSTARTX00026; FINDINGS: We describe here a versatile system for reconstituting protease activation networks in yeast and assaying the activity of these pathways using a cleavable transcription factor substrate in conjunction with reporter gene read-outs. The utility of these versatile assay components and their application for screening strategies was validated for all ten human Caspases, a family of intracellular proteases involved in cell death and inflammation, including implementation of assays for high throughput screening (HTS) of chemical libraries and functional screening of cDNA libraries. The versatility of the technology was also demonstrated for human autophagins, cysteine proteases involved in autophagy. CONCLUSIONS: Altogether, the yeast-based systems described here for monitoring activity of ectopically expressed mammalian proteases provide a fascile platform for functional genomics and chemical library screening

    Detection and elimination of cellular bottlenecks in protein-producing yeasts

    Get PDF
    Yeasts are efficient cell factories and are commonly used for the production of recombinant proteins for biopharmaceutical and industrial purposes. For such products high levels of correctly folded proteins are needed, which sometimes requires improvement and engineering of the expression system. The article summarizes major breakthroughs that led to the efficient use of yeasts as production platforms and reviews bottlenecks occurring during protein production. Special focus is given to the metabolic impact of protein production. Furthermore, strategies that were shown to enhance secretion of recombinant proteins in different yeast species are presented

    Gravitational Wave Detection by Interferometry (Ground and Space)

    Get PDF
    Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future "third generation" gravitational wave detectors, such as the Einstein Telescope (ET), will be discussed.Comment: Published in Living Reviews in Relativit

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore