2,225 research outputs found
Quantum Theory of Reactive Scattering in Phase Space
We review recent results on quantum reactive scattering from a phase space
perspective. The approach uses classical and quantum versions of normal form
theory and the perspective of dynamical systems theory. Over the past ten years
the classical normal form theory has provided a method for realizing the phase
space structures that are responsible for determining reactions in high
dimensional Hamiltonian systems. This has led to the understanding that a new
(to reaction dynamics) type of phase space structure, a {\em normally
hyperbolic invariant manifold} (or, NHIM) is the "anchor" on which the phase
space structures governing reaction dynamics are built. The quantum normal form
theory provides a method for quantizing these phase space structures through
the use of the Weyl quantization procedure. We show that this approach provides
a solution of the time-independent Schr\"odinger equation leading to a (local)
S-matrix in a neighborhood of the saddle point governing the reaction. It
follows easily that the quantization of the directional flux through the
dividing surface with the properties noted above is a flux operator that can be
expressed in a "closed form". Moreover, from the local S-matrix we easily
obtain an expression for the cumulative reactio probability (CRP).
Significantly, the expression for the CRP can be evaluated without the need to
compute classical trajectories. The quantization of the NHIM is shown to lead
to the activated complex, and the lifetimes of quantum states initialized on
the NHIM correspond to the Gamov-Siegert resonances. We apply these results to
the collinear nitrogen exchange reaction and a three degree-of-freedom system
corresponding to an Eckart barrier coupled to two Morse oscillators.Comment: 59 pages, 13 figure
Hopping Conduction in Disordered Carbon Nanotubes
We report electrical transport measurements on individual disordered carbon
nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template.
In both as-grown and annealed types of nanotubes, the low-field conductance
shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that
hopping conduction is the dominant transport mechanism, albeit with different
disorder-related coefficients T_{0}. The field dependence of low-temperature
conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at
sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit
weak positive magnetoresistance at low T = 1.7 K. Comparison with theory
indicates that our data are best explained by Coulomb-gap variable range
hopping conduction and permits the extraction of disorder-dependent
localization length and dielectric constant.Comment: 10 pages, 5 figure
Lessons from Love-Locks: The archaeology of a contemporary assemblage
This document is the Accepted Manuscript version. The final, definitive version of this paper has been published in Journal of Material Culture, November 2017, published by SAGE Publishing, All rights reserved.Loss of context is a challenge, if not the bane, of the ritual archaeologist’s craft. Those who research ritual frequently encounter difficulties in the interpretation of its often tantalisingly incomplete material record. Careful analysis of material remains may afford us glimpses into past ritual activity, but our often vast chronological separation from the ritual practitioners themselves prevent us from seeing the whole picture. The archaeologist engaging with structured deposits, for instance, is often forced to study ritual assemblages post-accumulation. Many nuances of its formation, therefore, may be lost in interpretation. This paper considers what insights an archaeologist could gain into the place, people, pace, and purpose of deposition by recording an accumulation of structured deposits during its formation, rather than after. To answer this, the paper will focus on a contemporary depositional practice: the love-lock. This custom involves the inscribing of names/initials onto a padlock, its attachment to a bridge or other public structure, and the deposition of the corresponding key into the water below; a ritual often enacted by a couple as a statement of their romantic commitment. Drawing on empirical data from a three-year diachronic site-specific investigation into a love-lock bridge in Manchester, UK, the author demonstrates the value of contemporary archaeology in engaging with the often enigmatic material culture of ritual accumulations.Peer reviewe
Febrile Illness Management in Children under Five Years of Age: A Qualitative Pilot Study on Primary Health Care Workers' Practices in Zanzibar.
In Zanzibar, malaria prevalence dropped substantially in the last decade and presently most febrile patients seen in primary health care facilities (PHCF) test negative for malaria. The availability of rapid diagnostic tests (RDTs) allows rural health workers to reliably rule out malaria in fever patients. However, additional diagnostic tools to identify alternative fever causes are scarce, often leaving RDT-negative patients without a clear diagnosis and management plan. This pilot study aimed to explore health workers' practices with febrile children and identify factors influencing their diagnostic and management decisions in non-malarial fever patients. Semi-structured key informant interviews were conducted with 12 health workers in six PHCFs in North A district, Zanzibar, April to June 2011. Interviews were coded using Atlas.ti to identify emerging themes that play a role in the diagnosis and management of febrile children. The following themes were identified: 1) health workers use caregivers' history of illness and RDT results for initial diagnostic and management decisions, but suggest caregivers need more education to prevent late presentation and poor health outcomes; 2) there is uncertainty regarding viral versus bacterial illness and health workers feel additional point-of-care diagnostic tests would help with differential diagnoses; 3) stock-outs of medications and limited caregivers' resources are barriers to delivering good care; 4) training, short courses and participation in research as well as; 5) weather also influences diagnostic decision-making. This pilot study found that health workers in Zanzibar use caregiver history of fever and results of malaria RDTs to guide management of febrile children. However, since most febrile children test negative for malaria, health workers believe additional training and point-of-care tests would improve their ability to diagnose and manage non-malarial fevers. Educating caregivers on signs and symptoms of febrile illness, as well as the introduction of additional tests to differentiate between viral and bacterial illness, would be important steps to get children to PHCFs earlier and decrease unnecessary antibiotic prescribing without compromising patient safety. More research is needed to expand an understanding of what would improve fever management in other resource-limited settings with decreasing malaria
Psychological determinants of whole-body endurance performance
Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research.
Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research.
Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants.
Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance.
Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described
Strong Interactions of Single Atoms and Photons near a Dielectric Boundary
Modern research in optical physics has achieved quantum control of strong
interactions between a single atom and one photon within the setting of cavity
quantum electrodynamics (cQED). However, to move beyond current
proof-of-principle experiments involving one or two conventional optical
cavities to more complex scalable systems that employ N >> 1 microscopic
resonators requires the localization of individual atoms on distance scales <
100 nm from a resonator's surface. In this regime an atom can be strongly
coupled to a single intracavity photon while at the same time experiencing
significant radiative interactions with the dielectric boundaries of the
resonator. Here, we report an initial step into this new regime of cQED by way
of real-time detection and high-bandwidth feedback to select and monitor single
Cesium atoms localized ~100 nm from the surface of a micro-toroidal optical
resonator. We employ strong radiative interactions of atom and cavity field to
probe atomic motion through the evanescent field of the resonator. Direct
temporal and spectral measurements reveal both the significant role of
Casimir-Polder attraction and the manifestly quantum nature of the atom-cavity
dynamics. Our work sets the stage for trapping atoms near micro- and
nano-scopic optical resonators for applications in quantum information science,
including the creation of scalable quantum networks composed of many
atom-cavity systems that coherently interact via coherent exchanges of single
photons.Comment: 8 pages, 5 figures, Supplemental Information included as ancillary
fil
A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying
In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. © 2013 Chotoo et al
The individual and combined effects of obesity- and ageing-induced systemic inflammation on human skeletal muscle properties.
BACKGROUND/OBJECTIVES: The purpose of this study was to determine whether circulating pro-inflammatory cytokines, elevated with increased fat mass and ageing, were associated with muscle properties in young and older people with variable adiposity. SUBJECTS/METHODS: Seventy-five young (18-49 yrs) and 67 older (50-80 yrs) healthy, untrained men and women (BMI: 17-49 kg/m(2)) performed isometric and isokinetic plantar flexor maximum voluntary contractions (MVCs). Volume (Vm), fascicle pennation angle (FPA), and physiological cross-sectional area (PCSA) of the gastrocnemius medialis (GM) muscle were measured using ultrasonography. Voluntary muscle activation (VA) was assessed using electrical stimulation. GM specific force was calculated as GM fascicle force/PCSA. Percentage body fat (BF%), body fat mass (BFM), and lean mass (BLM) were assessed using dual-energy X-ray absorptiometry. Serum concentration of 12 cytokines was measured using multiplex luminometry. RESULTS: Despite greater Vm, FPA, and PCSA (P0.05), while IL-8 correlated with VA in older but not young adults (r⩾0.378, P⩽0.027). TNF-alpha correlated with MVC, lean mass, GM FPA and maximum force in older adults (r⩾0.458; P⩽0.048). CONCLUSIONS: The age- and adiposity-dependent relationships found here provide evidence that circulating pro-inflammatory cytokines may play different roles in muscle remodelling according to the age and adiposity of the individual.International Journal of Obesity accepted article preview online, 29 August 2016. doi:10.1038/ijo.2016.151
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
- …
