4,366 research outputs found
New aspects of microwave properties of Nb in the mixed state
We present a study of the frequency dependence of the vortex dynamics in a
conventional superconductor. We have employed a swept-frequency, Corbino-disk
technique to investigate the temperature (3.6K-Tc) and high-field (from Hc2/2
to Hc2) microwave complex resistivity in Nb thin (20-40 nm) films as a function
of the frequency (1-20 GHz). We have found several previously unnoticed
features: (i) a field-dependent depinning frequency in the GHz range; (ii)
deviations from the accepted frequency dependence, that can be ascribed to some
kind of vortex creep; (iii) the presence of switching phenomena, reminiscent of
vortex instabilities. We discuss the possible origin of the features here
reported.Comment: 5 pages, 3 figures, presented at VORTEX VI Conference, to appear on
Physica
Interface Transparency of Nb/Pd Layered Systems
We have investigated, in the framework of proximity effect theory, the
interface transparency T of superconducting/normal metal layered systems which
consist of Nb and high paramagnetic Pd deposited by dc magnetron sputtering.
The obtained T value is relatively high, as expected by theoretical arguments.
This leads to a large value of the ratio although Pd does
not exhibit any magnetic ordering.Comment: To be published on Eur. Phys. J.
Kink Localization under Asymmetric Double-Well Potential
We study diffuse phase interfaces under asymmetric double-well potential
energies with degenerate minima and demonstrate that the limiting sharp
profile, for small interface energy cost, on a finite space interval is in
general not symmetric and its position depends exclusively on the second
derivatives of the potential energy at the two minima (phases). We discuss an
application of the general result to porous media in the regime of solid-fluid
segregation under an applied pressure and describe the interface between a
fluid-rich and a fluid-poor phase. Asymmetric double-well potential energies
are also relevant in a very different field of physics as that of Brownian
motors. An intriguing analogy between our result and the direction of the dc
soliton current in asymmetric substrate driven Brownian motors is pointed out
Microwave properties of Nb/PdNi/Nb trilayers. Observation of flux flow in excess of Bardeen-Stephen theory
We combine wideband (1-20 GHz) Corbino disk and dielectric resonator (8.2
GHz) techniques to study the microwave properties in Nb/PdNi/Nb trilayers,
grown by UHV dc magnetron sputtering, composed by Nb layers of nominal
thickness =15 nm, and a ferromagnetic PdNi layer of thickness = 1, 2,
8 and 9 nm. We focus on the vortex state. Magnetic fields up to were
applied. The microwave resistivity at fixed increases with ,
eventually exceeding the Bardeen Stephen flux flow value.Comment: 6 pages. Submitted to Journal of Superconductivity and Novel
Magnetis
Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates
Magnetoresistance oscillations were observed on networks of superconducting
ultrathin Nb nanowires presenting evidences of either thermal or quantum
activated phase slips. The magnetic transport data, discussed in the framework
of different scenarios, reveal that the system behaves coherently in the
temperature range where the contribution of the fluctuations is important.Comment: accepted for publication on Nanotechnolog
Microwave-induced thermal escape in Josephson junctions
We investigate, by experiments and numerical simulations, thermal activation
processes of Josephson tunnel junctions in the presence of microwave radiation.
When the applied signal resonates with the Josephson plasma frequency
oscillations, the switching current may become multi-valued in a temperature
range far exceeding the classical to quantum crossover temperature. Plots of
the switching currents traced as a function of the applied signal frequency
show very good agreement with the functional forms expected from Josephson
plasma frequency dependencies on the bias current. Throughout, numerical
simulations of the corresponding thermally driven classical Josephson junction
model show very good agreement with the experimental data.Comment: 10 pages and 4 figure
Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates
Robust porous silicon substrates were employed for generating interconnected
networks of superconducting ultrathin Nb nanowires. Scanning electron
microscopy analysis was performed to investigate the morphology of the samples,
which constitute of polycrystalline single wires with grain size of about 10
nm. The samples exhibit nonzero resistance over a broad temperature range below
the critical temperature, fingerprint of phase slippage processes. The
transport data are satisfactory reproduced by models describing both thermal
and quantum fluctuations of the superconducting order parameter in thin
homogeneous superconducting wires.Comment: accepted for publication on Applied Physics Letter
Robustness of the transition against compositional and structural ageing in S/F/S heterostructures
We have studied the temperature induced thermodynamic transition in
Nb/PdNi/Nb Superconductor/Ferromagnetic/Superconductor (SFS) heterostructures
by microwave measurements of the superfluid density. We have observed a shift
in the transition temperature with the ageing of the heterostructures,
suggesting that structural and/or chemical changes took place. Motivated by the
electrodynamics findings, we have extensively studied the local structural
properties of the samples by means of X-ray Absorption Spectroscopy (XAS)
technique, and the compositional profile by Time-of-Flight Secondary Ion Mass
Spectrometry (ToF-SIMS). We found that the samples have indeed changed their
properties, in particular for what concerns the interfaces and the composition
of the ferromagnetic alloy layer. The structural and compositional data are
consistent with the shift of the transition toward the behaviour of
heterostructures with different F layers. An important emerging indication to
the physics of SFS is the weak relevance of the ideality of the interfaces:
even in aged samples, with less-than-ideal interfaces, the temperature-induced
transition is still detectable albeit at a different critical F
thickness.Comment: 11 pages, 9 figures, accepted for publication on Phys. Rev. B,
http://journals.aps.org/prb
Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks
We report on the transport properties of an array of N about 30
interconnected Nb nanowires, grown by sputtering on robust porous Si
substrates. The analyzed system exhibits a broad resistive transition in zero
magnetic field, H, and highly nonlinear V(I) characteristics as a function of H
which can be both consistently described by quantum tunneling of phase slips.Comment: accepted for publication on Appl. Phys. Let
Diagnostic accuracy of short-time inversion recovery sequence in Graves' ophthalmopathy before and after prednisone treatment
Introduction: In Graves' Ophthalmopathy, it is important to distinguish active inflammatory phase, responsive to immunosuppressive treatment, from fibrotic unresponsive inactive one. The purpose of this study is, first, to identify the relevant orbital magnetic resonance imaging signal intensities before treatment, so to classify patients according to their clinical activity score (CAS), discriminating inactive (CAS3) subjects and, second, to follow post-steroid treatment disease. Methods: An observational study was executed on 32 GO consecutive patients in different phases of disease, based on clinical and orbital Magnetic Resonance Imaging parameters, compared to 32 healthy volunteers. Orbital Magnetic Resonance Imaging was performed on a 1.5 tesla Magnetic Resonance Unit by an experienced neuroradiologist blinded to the clinical examinations. Results: In pre-therapy patients, compared to controls, a medial rectus muscle statistically significant signal intensity ratio (SIR) in short-time inversion recovery (STIR) (long TR/TE) sequence was found, as well as when comparing patients before and after treatment, both medial and inferior rectus muscle SIR resulted significantly statistically different in STIR. These increased outcomes explain the inflammation oedematous phase of disease, moreover after steroid administration, compared to controls; patients presented lack of that statistically significant difference, thus suggesting treatment effectiveness. Conclusion: In our study, we proved STIR signal intensities increase in inflammation oedematous phase, confirming STIR sequence to define active phase of disease with more sensibility and reproducibility than CAS alone and to evaluate post-therapy involvement. © 2014 Springer-Verlag
- …
