541 research outputs found
Quantum theory of intersubband polarons
We present a microscopic quantum theory of intersubband polarons,
quasiparticles originated from the coupling between intersubband transitions
and longitudinal optical phonons. To this aim we develop a second quantized
theory taking into account both the Fr\"ohlich interaction between phonons and
intersubband transitions and the Coulomb interaction between the intersubband
transitions themselves. Our results show that the coupling between the phonons
and the intersubband transitions is extremely intense, thanks both to the
collective nature of the intersubband excitations and to the natural tight
confinement of optical phonons. Not only the coupling is strong enough to
spectroscopically resolve the resonant splitting between the modes (strong
coupling regime), but it can become comparable to the bare frequency of the
excitations (ultrastrong coupling regime). We thus predict the possibility to
exploit intersubband polarons both for applied optoelectronic research, where a
precise control of the phonon resonances is needed, and also to observe
fundamental quantum vacuum physics, typical of the ultrastrong coupling regime
Many-body physics of a quantum fluid of exciton-polaritons in a semiconductor microcavity
Some recent results concerning nonlinear optics in semiconductor
microcavities are reviewed from the point of view of the many-body physics of
an interacting photon gas. Analogies with systems of cold atoms at thermal
equilibrium are drawn, and the peculiar behaviours due to the non-equilibrium
regime pointed out. The richness of the predicted behaviours shows the
potentialities of optical systems for the study of the physics of quantum
fluids.Comment: Proceedings of QFS2006 conference to appear on JLT
Electrically injected cavity polaritons
We have realised a semiconductor quantum structure that produces
electroluminescence while operating in the light-matter strong coupling regime.
The mid-infrared light emitting device is composed of a quantum cascade
structure embedded in a planar microcavity, based on the GaAs/AlGaAs material
system. At zero bias, the structure is characterised using reflectivity
measurements which show, up to room temperature, a wide polariton anticrossing
between an intersubband transition and the resonant cavity photon mode. Under
electrical injection the spectral features of the emitted light change
drastically, as electrons are resonantly injected in a reduced part of the
polariton branches. Our experiment demonstrates that electrons can be
selectively injected into polariton states up to room temperature.Comment: 10 pages, 4 figure
Voltage control of nuclear spin in ferromagnetic Schottky diodes
We employ optical pump-probe spectroscopy to investigate the voltage
dependence of spontaneous electron and nuclear spin polarizations in hybrid
MnAs/n-GaAs and Fe/n-GaAs Schottky diodes. Through the hyperfine interaction,
nuclear spin polarization that is imprinted by the ferromagnet acts on
conduction electron spins as an effective magnetic field. We demonstrate tuning
of this nuclear field from <0.05 to 2.4 kG by varying a small bias voltage
across the MnAs device. In addition, a connection is observed between the diode
turn-on and the onset of imprinted nuclear polarization, while traditional
dynamic nuclear polarization exhibits relatively little voltage dependence.Comment: Submitted to Physical Review B Rapid Communications. 15 pages, 3
figure
Drag in a resonantly driven polariton fluid
We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra into three different categories (Ciuti and Carusotto 2005 Phys. Status Solidi b 242 2224): linear for zero, diffusive-like for positive and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work (Cancellieri et al 2010 Phys. Rev. B 82 224512), where the drag was determined numerically for a finite-size defect
Keldysh Green's function approach to coherence in a non-equilibrium steady state: connecting Bose-Einstein condensation and lasing
Solid state quantum condensates often differ from previous examples of
condensates (such as Helium, ultra-cold atomic gases, and superconductors) in
that the quasiparticles condensing have relatively short lifetimes, and so as
for lasers, external pumping is required to maintain a steady state. On the
other hand, compared to lasers, the quasiparticles are generally more strongly
interacting, and therefore better able to thermalise. This leads to questions
of how to describe such non-equilibrium condensates, and their relation to
equilibrium condensates and lasers. This chapter discusses in detail how the
non-equilibrium Green's function approach can be applied to the description of
such a non-equilibrium condensate, in particular, a system of microcavity
polaritons, driven out of equilibrium by coupling to multiple baths. By
considering the steady states, and fluctuations about them, it is possible to
provide a description that relates both to equilibrium condensation and to
lasing, while at the same time, making clear the differences from simple
lasers
Vortices in polariton OPO superfluids
This chapter reviews the occurrence of quantised vortices in polariton
fluids, primarily when polaritons are driven in the optical parametric
oscillator (OPO) regime. We first review the OPO physics, together with both
its analytical and numerical modelling, the latter being necessary for the
description of finite size systems. Pattern formation is typical in systems
driven away from equilibrium. Similarly, we find that uniform OPO solutions can
be unstable to the spontaneous formation of quantised vortices. However,
metastable vortices can only be injected externally into an otherwise stable
symmetric state, and their persistence is due to the OPO superfluid properties.
We discuss how the currents charactering an OPO play a crucial role in the
occurrence and dynamics of both metastable and spontaneous vortices.Comment: 40 pages, 16 figure
Josephson dynamics for coupled polariton modes under the atom-field interaction in the cavity
We consider a new approach to the problem of Bose-Einstein condensation (BEC)
of polaritons for atom-field interaction under the strong coupling regime in
the cavity. We investigate the dynamics of two macroscopically populated
polariton modes corresponding to the upper and lower branch energy states
coupled via Kerr-like nonlinearity of atomic medium. We found out the
dispersion relations for new type of collective excitations in the system under
consideration. Various temporal regimes like linear (nonlinear) Josephson
transition and/or Rabi oscillations, macroscopic quantum self-trapping (MQST)
dynamics for population imbalance of polariton modes are predicted. We also
examine the switching properties for time-averaged population imbalance
depending on initial conditions, effective nonlinear parameter of atomic medium
and kinetic energy of low-branch polaritons.Comment: 10 pages, 6 postscript figures, uses svjour.cl
Merging of vortices and antivortices in polariton superfluids
Quantised vortices are remarkable manifestations on a macroscopic scale of the coherent nature of
quantum fluids, and the study of their properties is of fundamental importance for the understanding
of this peculiar state of matter. Cavity-polaritons, due to their double light-matter nature, offer
a unique controllable environment to investigate these properties. In this work we theoretically
investigate the possibility to deterministically achieve the annihilation of a vortex with an antivortex
through the increase of the polariton density in the region surrounding the vortices. Moreover we
demonstrate that by means of this mechanism an array of vortex-antivortex pairs can be completely
washed out
- …
