1,053 research outputs found

    The roles of apex dipoles and field penetration in the physics of charged, field emitting, single-walled carbon nanotubes

    Get PDF
    A 1 μm long, field emitting, (5, 5) single-walled carbon nanotube (SWCNT) closed with a fullerene cap, and a similar open nanotube with hydrogen-atom termination, have been simulated using the modified neglect of diatomic overlap quantum-mechanical method. Both contain about 80 000 atoms. It is found that field penetration and band bending, and various forms of chemically and electrically induced apex dipole play roles. Field penetration may help explain electroluminescence associated with field emitting CNTs. Charge-density oscillations, induced by the hydrogen adsorption, are also found. Many of the effects can be related to known effects that occur with metallic or semiconductor field emitters; this helps both to explain the effects and to unify our knowledge about FE emitters. However, it is currently unclear how best to treat correlation-and-exchange effects when defining the CNT emission barrier. A new form of definition for the field enhancement factor (FEF) is used. Predicted FEF values for these SWCNTs are significantly less than values predicted by simple classical formulae. The FEF for the closed SWCNT decreases with applied field; the FEF for the H-terminated open SWCNT is less than the FEF for the closed SWCNT but increases with applied field. Physical explanations for this behavior are proposed but the concept of FEF is clearly problematical for CNTs. Curved Fowler-Nordheim plots are predicted. Overall, the predicted field emission performance of the H-terminated open SWCNT is slightly better than that of the closed SWCNT, essentially because a C-H dipole is formed that reduces the height of the tunneling barrier. In general, the physics of a charged SWCNT seems much more complex than hitherto realized. © 2008 American Institute of Physics.published_or_final_versio

    Home parenteral nutrition with an omega-3-fatty-acid-enriched MCT/LCT lipid emulsion in patients with chronic intestinal failure (the HOME study):study protocol for a randomized, controlled, multicenter, international clinical trial

    Get PDF
    BACKGROUND: Home parenteral nutrition (HPN) is a life-preserving therapy for patients with chronic intestinal failure (CIF) indicated for patients who cannot achieve their nutritional requirements by enteral intake. Intravenously administered lipid emulsions (ILEs) are an essential component of HPN, providing energy and essential fatty acids, but can become a risk factor for intestinal-failure-associated liver disease (IFALD). In HPN patients, major effort is taken in the prevention of IFALD. Novel ILEs containing a proportion of omega-3 polyunsaturated fatty acids (n-3 PUFA) could be of benefit, but the data on the use of n-3 PUFA in HPN patients are still limited. METHODS/DESIGN: The HOME study is a prospective, randomized, controlled, double-blind, multicenter, international clinical trial conducted in European hospitals that treat HPN patients. A total of 160 patients (80 per group) will be randomly assigned to receive the n-3 PUFA-enriched medium/long-chain triglyceride (MCT/LCT) ILE (Lipidem/Lipoplus® 200 mg/ml, B. Braun Melsungen AG) or the MCT/LCT ILE (Lipofundin® MCT/LCT/Medialipide® 20%, B. Braun Melsungen AG) for a projected period of 8 weeks. The primary endpoint is the combined change of liver function parameters (total bilirubin, aspartate transaminase and alanine transaminase) from baseline to final visit. Secondary objectives are the further evaluation of the safety and tolerability as well as the efficacy of the ILEs. DISCUSSION: Currently, there are only very few randomized controlled trials (RCTs) investigating the use of ILEs in HPN, and there are very few data at all on the use of n-3 PUFAs. The working hypothesis is that n-3 PUFA-enriched ILE is safe and well-tolerated especially with regard to liver function in patients requiring HPN. The expected outcome is to provide reliable data to support this thesis thanks to a considerable number of CIF patients, consequently to broaden the present evidence on the use of ILEs in HPN. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03282955. Registered on 14 September 2017

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/

    Detecting grave sites from surface anomalies: A longitudinal study in an Australian woodland.

    Full text link
    Forensic investigations of single and mass graves often use surface anomalies, including changes to soil and vegetation conditions, to identify potential grave locations. Though numerous resources describe surface anomalies in grave detection, few studies formally investigate the rate at which the surface anomalies return to a natural state; hence, the period the grave is detectable to observers. Understanding these processes can provide guidance as to when ground searches will be an effective strategy for locating graves. We studied three experimental graves and control plots in woodland at the Australian Facility for Taphonomic Experimental Research (Sydney, Australia) to monitor the rate at which surface anomalies change following disturbance. After three years, vegetation cover on all grave sites and control plots had steadily increased but remained substantially less than undisturbed surroundings. Soil anomalies (depressions and cracking) were more pronounced at larger grave sites versus the smaller grave and controls, with leaf litterfall rendering smaller graves difficult to detect beyond 20 months. Similar results were observed in two concurrent burial studies, except where accelerated revegetation appeared to be influenced by mummified remains. Extreme weather events such as heatwaves and heavy rainfall may prolong the detection window for grave sites by hindering vegetation establishment. Observation of grave-indicator vegetation, which exhibited abnormally strong growth 10 months after commencement, suggests that different surface anomalies may have different detection windows. Our findings are environment-specific, but the concepts are applicable globally

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Checkpoint kinase inhibitor AZD7762 strongly sensitises urothelial carcinoma cells to gemcitabine

    Get PDF
    Background: More effective chemotherapies are urgently needed for bladder cancer, a major cause of morbidity and mortality worldwide. We therefore explored the efficacy of the combination of gemcitabine and AZD7762, a checkpoint kinase 1/2 (CHK1/2) inhibitor, for bladder cancer. Methods: Viability, clonogenicity, cell cycle distribution and apoptosis were assessed in urothelial cancer cell lines and various non-malignant urothelial cells treated with gemcitabine and AZD7762. DNA damage was assessed by ?H2A.X and 53-BP1 staining and checkpoint activation was followed by Western blotting. Pharmacological inhibition of CHK1 and CHK2 was compared to downregulation of either CHK1 or CHK2 using siRNAs. Results: Combined use of gemcitabine and AZD7762 synergistically reduced urothelial carcinoma cell viability and colony formation relative to either single treatment. Non-malignant urothelial cells were substantially less sensitive to this drug combination. Gemcitabine plus AZD7762 inhibited cell cycle progression causing cell accumulation in S-phase. Moreover, the combination induced pronounced levels of apoptosis as indicated by an increase in the fraction of sub-G1 cells, in the levels of cleaved PARP, and in caspase 3/7 activity. Mechanistic investigations showed that AZD7762 treatment inhibited the repair of gemcitabine-induced double strand breaks by interference with CHK1, since siRNA-mediated depletion of CHK1 but not of CHK2 mimicked the effects of AZD7762. Conclusions: AZD7762 enhanced sensitivity of urothelial carcinoma cells to gemcitabine by inhibiting DNA repair and disturbing checkpoints. Combining gemcitabine with CHK1 inhibition holds promise for urothelial cancer therapy
    corecore