49 research outputs found

    Learning to Eat Vegetables in Early Life: The Role of Timing, Age and Individual Eating Traits

    Get PDF
    Vegetable intake is generally low among children, who appear to be especially fussy during the pre-school years. Repeated exposure is known to enhance intake of a novel vegetable in early life but individual differences in response to familiarisation have emerged from recent studies. In order to understand the factors which predict different responses to repeated exposure, data from the same experiment conducted in three groups of children from three countries (n = 332) aged 4–38 m (18.9±9.9 m) were combined and modelled. During the intervention period each child was given between 5 and 10 exposures to a novel vegetable (artichoke puree) in one of three versions (basic, sweet or added energy). Intake of basic artichoke puree was measured both before and after the exposure period. Overall, younger children consumed more artichoke than older children. Four distinct patterns of eating behaviour during the exposure period were defined. Most children were “learners” (40%) who increased intake over time. 21% consumed more than 75% of what was offered each time and were labelled “plate-clearers”. 16% were considered “non-eaters” eating less than 10 g by the 5th exposure and the remainder were classified as “others” (23%) since their pattern was highly variable. Age was a significant predictor of eating pattern, with older pre-school children more likely to be non-eaters. Plate-clearers had higher enjoyment of food and lower satiety responsiveness than non-eaters who scored highest on food fussiness. Children in the added energy condition showed the smallest change in intake over time, compared to those in the basic or sweetened artichoke condition. Clearly whilst repeated exposure familiarises children with a novel food, alternative strategies that focus on encouraging initial tastes of the target food might be needed for the fussier and older pre-school children

    Heterogeneous Adaptive Trajectories of Small Populations on Complex Fitness Landscapes

    Get PDF
    Background Small populations are thought to be adaptively handicapped, not only because they suffer more from deleterious mutations but also because they have limited access to new beneficial mutations, particularly those conferring large benefits. Methodology/Principal Findings Here, we test this widely held conjecture using both simulations and experiments with small and large bacterial populations evolving in either a simple or a complex nutrient environment. Consistent with expectations, we find that small populations are adaptively constrained in the simple environment; however, in the complex environment small populations not only follow more heterogeneous adaptive trajectories, but can also attain higher fitness than the large populations. Large populations are constrained to near deterministic fixation of rare large-benefit mutations. While such determinism speeds adaptation on the smooth adaptive landscape represented by the simple environment, it can limit the ability of large populations from effectively exploring the underlying topography of rugged adaptive landscapes characterized by complex environments. Conclusions Our results show that adaptive constraints often faced by small populations can be circumvented during evolution on rugged adaptive landscapes

    The Repertoire and Dynamics of Evolutionary Adaptations to Controlled Nutrient-Limited Environments in Yeast

    Get PDF
    The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes—including point mutations, structural changes, and insertion variation—that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for ∼200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5–50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant metabolic pathways, but many of the mutations pointed to genes not previously associated with the relevant physiology. Thus, in addition to answering basic mechanistic questions about evolutionary mechanisms, our work suggests that experimental evolution can also shed light on the function and regulation of individual metabolic pathways

    Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease

    Get PDF
    Background 1Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches

    Genetically elevated high-density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer's disease

    Get PDF
    Introduction: There is conflicting evidence whether high-density lipoprotein cholesterol (HDL-C) is a risk factor for Alzheimer's disease (AD) and dementia. Genetic variation in the cholesteryl ester transfer protein (CETP) locus is associated with altered HDL-C. We aimed to assess AD risk by genetically predicted HDL-C. Methods: Ten single nucleotide polymorphisms within the CETP locus predicting HDL-C were applied to the International Genomics of Alzheimer's Project (IGAP) exome chip stage 1 results in up 16,097 late onset AD cases and 18,077 cognitively normal elderly controls. We performed instrumental variables analysis using inverse variance weighting, weighted median, and MR-Egger. Results: Based on 10 single nucleotide polymorphisms distinctly predicting HDL-C in the CETP locus, we found that HDL-C was not associated with risk of AD (P > .7). Discussion: Our study does not support the role of HDL-C on risk of AD through HDL-C altered by CETP. This study does not rule out other mechanisms by which HDL-C affects risk of AD
    corecore