23 research outputs found
Measurement of the nu(e) and total B-8 solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set
This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of He-3 proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active B-8 solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54(-0.31)(+0.33)(stat.)(-0.34)(+0.36)(syst.) x 10(6) cm(-2) s(-1), consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Delta m(2) = 7.59(-0.21)(+0.19) x 10(-5) eV(2) and theta = 34.4(-1.2)(+1.3) degrees. DOI: 10.1103/PhysRevC.87.01550
Tests of Lorentz invariance at the Sudbury Neutrino Observatory
Experimental tests of Lorentz symmetry in systems of all types are critical
for ensuring that the basic assumptions of physics are well-founded. Data from
all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water
Cherenkov detector, are analyzed for possible violations of Lorentz symmetry in
the neutrino sector. Such violations would appear as one of eight possible
signal types in the detector: six seasonal variations in the solar electron
neutrino survival probability differing in energy and time dependence, and two
shape changes to the oscillated solar neutrino energy spectrum. No evidence for
such signals is observed, and limits on the size of such effects are
established in the framework of the Standard Model Extension, including 40
limits on perviously unconstrained operators and improved limits on 15
additional operators. This makes limits on all minimal, Dirac-type Lorentz
violating operators in the neutrino sector available for the first time
