861 research outputs found

    At-sea distribution of satellite-tracked Grey-faced Petrels, Pterodroma macroptera gouldi, captured on the Ruamaahua (Aldermen) Islands, New Zealand

    Get PDF
    We used satellite telemetry to determine the at-sea distribution of 32 adult (non-breeders and failed breeders) Grey-faced Petrels, Pterodroma macroptera gouldi, during July-October in 2006 and 2007. Adults captured at breeding colonies on the Ruamaahua (Aldermen) Islands ranged across the southwestern Pacific Ocean and Tasman Sea between 20-49°S and 142°E and 1300W Petrels were located almost exclusively over offshore waters> 1000 m depth. The extent of their distributions was similar across years, but petrels ranged farther south and west in 2006. Individuals displayed a high degree of spatial overlap (48-620/0 among individuals) and area use revealed three general "hotspots" within their overall range: waters near the Ruamaahua Islands; the central Tasman Sea; and the area surrounding the Chatham Rise. In July-August 2006, most petrels congregated over the Tasman Sea, but for the same period in 2007 were predominantly associated with Chatham Rise. The home ranges of petrels tended to overlap disproportionately more than expected with the Australian Exclusive Economic Zone and less than expected with High Seas, relative to the area available in each zone, in July-August 2006. Accordingly, multiple nations are responsible for determining potential impacts resulting from fisheries bycatch and potential resource competition with Grey-faced Petrels

    Recognizing detachment-mode seafloor spreading in the deep geological past.

    Get PDF
    Large-offset oceanic detachment faults are a characteristic of slow- and ultraslow-spreading ridges, leading to the formation of oceanic core complexes (OCCs) that expose upper mantle and lower crustal rocks on the seafloor. The lithospheric extension accommodated by these structures is now recognized as a fundamentally distinct “detachment-mode” of seafloor spreading compared to classical magmatic accretion. Here we demonstrate a paleomagnetic methodology that allows unequivocal recognition of detachment-mode seafloor spreading in ancient ophiolites and apply this to a potential Jurassic detachment fault system in the Mirdita ophiolite (Albania). We show that footwall and hanging wall blocks either side of an inferred detachment have significantly different magnetizations that can only be explained by relative rotation during seafloor spreading. The style of rotation is shown to be identical to rolling hinge footwall rotation documented recently in OCCs in the Atlantic, confirming that detachment-mode spreading operated at least as far back as the Jurassic

    Spatially and genetically distinct African trypanosome virulence variants defined by host interferon-g response

    Get PDF
    We describe 2 spatially distinct foci of human African trypansomiasis in eastern Uganda. The Tororo and Soroti foci of <i>Trypanosoma brucei rhodesiense</i> infection were genetically distinct as characterized by 6 microsatellite and 1 minisatellite polymorphic markers and were characterized by differences in disease progression and host-immune response. In particular, infections with the Tororo genotype exhibited an increased frequency of progression to and severity of the meningoencephalitic stage and higher plasma interferon (IFN)–γ concentration, compared with those with the Soroti genotype. We propose that the magnitude of the systemic IFN-γ response determines the time at which infected individuals develop central nervous system infection and that this is consistent with the recently described role of IFN-γ in facilitating blood-brain barrier transmigration of trypanosomes in an experimental model of infection. The identification of trypanosome isolates with differing disease progression phenotypes provides the first field-based genetic evidence for virulence variants in T. <i>brucei rhodesiense</i>

    Discovery of mating in the major African livestock pathogen Trypanosoma congolense

    Get PDF
    The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen

    Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza virus that expresses an altered nucleoprotein sequence

    Get PDF
    Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes

    Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists

    Get PDF
    PURPOSE: The ferret cisplatin emesis model has been used for ~30 years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (n = 53) used a 10 mg kg(−1) dose to induce acute emesis, which peaked after 2 h. More recent studies (n = 11) also used 5 mg kg(−1), which induced a biphasic response peaking at 12 h and 48 h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5 mg kg(−1)) emesis by 68% (45–91%) during the acute phase (day 1) and by 67% (48–86%) and 53% (38–68%, all P < 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret

    The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis

    Get PDF
    Acknowledgements We wish to thank Jorge Galán, Gregory Pazour, Derek Toomre, Giuliano Callaini, Joel Rosenbaum, Alessandra Boletta and Francesco Blasi for generously providing reagents and for productive discussions, and Sonia Grassini for technical assistance. The work was carried out with the financial support of Telethon (GGP11021) and AIRC.Peer reviewedPostprin

    Individual Rights, Economic Transactions, and Recognition: A Legal Approach to Social Economics

    Get PDF
    Modernity brought the idea of individual property rights as a com- plex phenomenon. However, economics adopted a simplistic view of property as a fundamental institution, understating the complex interaction of different rights and obligations that frame the legal environment of economic processes with an insufficiently elaborated tool. Here, a more elaborate view of legal elements will be propose

    Illness Schema Activation and the Effects of Illness Seasonality on Accessibility of Implicit Illness-Related Information

    Get PDF
    The Common-Sense Model (CSM) of illness self-regulation is a leading theoretical framework describing the process by which an individual recognizes that he or she is physically ill and subsequently attempts to manage that illness state. The CSM proposes that people possess schematically organized implicit cognitive representations of health threats comprising information about illness such as symptoms, causes, label, duration, consequences, and procedures for managing threat [1, 2, 3, 4]. The proposed function of these stored knowledge structures is to activate a self-regulation process that might protect or restore a state of well-being [5]. The CSM proposes that the schematic representation is centrally activated by detection of deviations from the normal functioning self (i.e., experienced symptoms). The identification of illness and the initiation of self-management attempts follow from the search for illness-relevant cognitive structures and the matching of the content of illness schema to the symptomatic experience. For example, a headache (a symptomatic deviation from normal somatic experience) might activate illness schemata containing the cognitive representation of “headache” such as “hangover,” “dehydration,” or “flu.” The matching of the symptom to a particular illness schema will follow from the search and match to other aspects of plausible illness representations, such as its probable cause or duration (timeline).Full Tex

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe
    corecore