12 research outputs found

    Genotypes at the APOE and SCA2 loci do not predict the course of multiple sclerosis in patients of Portuguese origin

    Get PDF
    Prova tipográfica (In Press)Multiple sclerosis (MS) is a demyelinating disease that affects about one in 500 young Europeans. In order to test the previously proposed influence of the APOE and SCA2 loci on susceptibility to MS, we studied these loci in 243 Portuguese patients and 192 healthy controls and both parents of 92 patients. We did not detect any significant difference when APOE and SCA2 allele frequencies of cases and controls were compared, or when we compared cases with different forms of the disease. Disequilibrium of transmission was tested for both loci in the 92 trios, and we did not observe segregation distortion. To test the influence of the APOE o4 and SCA2 22 CAGs alleles on severity of disease, we compared age at onset and progression rate between groups with and without those alleles. We did not observe an association of the o4 or the 22 CAGs alleles with rate of progression in our total patient population; allele o4 was associated with increased rate of progression of MS in a subset of patients with less than 10 years of the disease. However, globally in the Portuguese population, the APOE and SCA2 genes do not seem to be useful in the clinical context as prognostic markers of this disorder.Fundação para a Ciência e a Tecnologia (FCT) - grant SFRH/BD/9111/2002.Serono Portugal

    Observational analytic studies in multiple sclerosis: controlling bias through study design and conduct. The Australian Multicentre Study of Environment and Immune Function

    Get PDF
    Rising multiple sclerosis incidence over the last 50 years and geographic patterns of occurrence suggest an environmental role in the causation of this multifactorial disease. Design options for epidemiological studies of environmental causes of multiple sclerosis are limited by the low incidence of the disease, possible diagnostic delay and budgetary constraints. We describe scientific and methodological issues considered in the development of the Australian Multicentre Study of Environment and Immune Function (the Ausimmune Study), which seeks, in particular, to better understand the causes of the well-known MS positive latitudinal gradient. A multicentre, case-control design down the eastern seaboard of Australia allows the recruitment of sufficient cases for adequate study power and provides data on environmental exposures that vary by latitude. Cases are persons with an incident first demyelinating event (rather than prevalent multiple sclerosis), sourced from a population base using a two tier notification system. Controls, matched on sex, age (within two years) and region of residence, are recruited from the general population. Biases common in case-control studies, eg, prevalence-incidence bias, admission-rate bias, non-respondent bias, observer bias and recall bias, as well as confounding have been carefully considered in the study design and conduct of the Ausimmune Study

    Current methods in structural proteomics and its applications in biological sciences

    Full text link

    Evaluating the Field Efficacy of

    No full text

    Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut

    Get PDF
    N-acetylneuraminic acid (Neu5Ac), the most abundant sialic acid form in humans, is commonly found in a terminal location on colonic mucins glycans where it is a much-coveted source of nutrients for gut bacteria. The mucin-foraging strategy of the human gut symbiont Ruminococcus gnavus is associated with the expression of an intramolecular trans-sialidase (IT-sialidase) that targets and cleaves off terminal α2–3 -linked Neu5Ac from glycoproteins, releasing 2,7-anhydro-Neu5Ac instead of Neu5Ac. Using a combination of in silico, molecular, biochemical and structural approaches, we have unravelled a unique metabolic pathway leading to the transport and metabolism of 2,7-anhydro-Neu5Ac which is underpinned by the exquisite specificity of the sialic acid transporter. The substrate binding protein, which forms part of a sialic acid transporter (SAT2) in R. gnavus ATCC29149, is specific to 2,7-anhydro-Neu5Ac, as shown by fluorescence spectroscopy, isothermal titration calorimetry (ITC), and saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR). Once inside the cell, 2,7-anhydro-Neu5Ac is converted into Neu5Ac via a novel enzymatic reaction catalysed by an oxidoreductase, RgNanOx. Following this conversion, Neu5Ac is then catabolised into N-acetylmannosamine (ManNAc) and pyruvate via the action of a Neu5Ac specific aldolase that is structurally and biochemically typical of NanA-like enzymes, as shownby X-ray crystallography of RgNanA wild-type and site-directed active site mutant K167A in complex with Neu5Ac. We confirmed the importance of this metabolic pathway in vivo by generating a R. gnavus nan cluster deletion mutant that lost the ability to grow on sialylated substrates. We showed that in gnotobiotic mice colonised with R. gnavus wild-type and mutant strains, the fitness of the nan mutant was significantly impaired as compared to the wild-type strain with a reduced ability to colonise the mucus layer. Overall, our study revealed a novel sialic acid pathway in bacteria, which has significant implications for the spatial adaptation of mucin-foraging gut symbionts in health and disease
    corecore