54 research outputs found
Possible evidence of a spontaneous spin polarization in mesoscopic two-dimensional electron systems
We have experimentally studied the nonequilibrium transport in low-density clean two-dimensional (2D) electron systems at mesoscopic length scales. At zero magnetic field (B), a double-peak structure in the nonlinear conductance was observed close to the Fermi energy in the localized regime. From the behavior of these peaks at nonzero B, we could associate them with the opposite spin states of the system, indicating a spontaneous spin polarization at B=0. Detailed temperature and disorder dependence of the structure shows that such a splitting is a ground-state property of low-density 2D systems
Kondo effect from a tunable bound state within a quantum wire
We investigate the conductance of quantum wires with a variable open quantum dot geometry, displaying an exceptionally strong Kondo effect and most of the 0.7 structure characteristics. Our results indicate that the 0.7 structure is not a manifestation of the singlet Kondo effect. However, specific similarities between our devices and many of the clean quantum wires reported in the literature suggest a weakly bound state is often present in real quantum wires
Zero-bias anomaly and kondo-assisted quasiballistic 2D transport
Nonequilibrium transport measurements in mesoscopic quasiballistic 2D electron systems show an enhancement in the differential conductance around the Fermi energy. At very low temperatures, such a zero-bias anomaly splits, leading to a suppression of linear transport at low energies. We also observed a scaling of the nonequilibrium characteristics at low energies which resembles electron scattering by two-state systems, addressed in the framework of two-channel Kondo model. Detailed sample-to-sample reproducibility indicates an intrinsic phenomenon in unconfined 2D systems in the low electron-density regime
Energy-dependent tunneling from few-electron dynamic quantum dots
We measure the electron escape rate from surface-acoustic-wave dynamic quantum dots (QDs) through a tunnel barrier. Rate equations are used to extract the tunneling rates, which change by an order of magnitude with tunnel-barrier-gate voltage. We find that the tunneling rates depend on the number of electrons in each dynamic QD because of Coulomb energy. By comparing this dependence to a saddle-point-potential model, the addition energies of the second and third electron in each dynamic QD are estimated. The scale (similar to a few meV) is comparable to those in static QDs as expected
Recommended from our members
Transporting and manipulating single electrons in surface-acoustic-wave minima
A surface acoustic wave (SAW) can produce a moving potential wave that can trap and drag electrons along with it. We review work on using a SAW to create moving quantum dots containing single electrons, with the aims of developing a current standard, emitting single photons, transferring single electrons between static quantum dots, and investigating non-adiabatic effects
Nature of the many-body excitations in a quantum wire: Theory and experiment
The natural excitations of an interacting one-dimensional system at low
energy are hydrodynamic modes of Luttinger liquid, protected by the Lorentz
invariance of the linear dispersion. We show that beyond low energies, where
quadratic dispersion reduces the symmetry to Galilean, the main character of
the many-body excitations changes into a hierarchy: calculations of dynamic
correlation functions for fermions (without spin) show that the spectral
weights of the excitations are proportional to powers of
, where is a length-scale related to
interactions and is the system length. Thus only small numbers of
excitations carry the principal spectral power in representative regions on the
energy-momentum planes. We have analysed the spectral function in detail and
have shown that the first-level (strongest) excitations form a mode with
parabolic dispersion, like that of a renormalised single particle. The
second-level excitations produce a singular power-law line shape to the
first-level mode and multiple power-laws at the spectral edge. We have
illustrated crossover to Luttinger liquid at low energy by calculating the
local density of state through all energy scales: from linear to non-linear,
and to above the chemical potential energies. In order to test this model, we
have carried out experiments to measure momentum-resolved tunnelling of
electrons (fermions with spin) from/to a wire formed within a GaAs
heterostructure. We observe well-resolved spin-charge separation at low energy
with appreciable interaction strength and only a parabolic dispersion of the
first-level mode at higher energies. We find structure resembling the
second-level excitations, which dies away rapidly at high momentum in line with
the theoretical predictions here.We acknowledge financial support from the UK EPSRC through Grants No. EP/J01690X/1 and No. EP/J016888/1 and from the DFG through SFB/TRR 49. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915.This is the author accepted manuscript. The final version is available from APS via http://dx.doi.org/10.1103/PhysRevB.93.07514
Single-electron population and depopulation of an isolated quantum dot using a surface-acoustic-wave pulse
We use a pulse of surface acoustic waves (SAWs) to control the electron population and depopulation of a quantum dot. The barriers between the dot and reservoirs are set high to isolate the dot. Within a time scale of similar to 100 s the dot can be set to a nonequilibrium charge state, where an empty (occupied) level stays below (above) the Fermi energy. A pulse containing a fixed number of SAW periods is sent through the dot, controllably changing the potential, and hence the tunneling probability, to add (remove) an electron to (from) the dot
Hierarchy of modes in an interacting one-dimensional system.
Studying interacting fermions in one dimension at high energy, we find a hierarchy in the spectral weights of the excitations theoretically, and we observe evidence for second-level excitations experimentally. Diagonalizing a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of R^{2}/L^{2}, where R is a length scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalized single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from or to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.We acknowledge financial support from the UK
EPSRC through Grant No. EP/J01690X/1 and
EP/J016888/1.This is the accepted manuscript. The final version is available at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.196401
Effects of a piezoelectric substrate on phonon-drag thermopower in monolayer graphene
The phonon-drag thermopower is studied in a monolayer graphene on a piezoelectric substrate. The phonon-drag contribution [Formula: see text] from the extrinsic potential of piezoelectric surface acoustic (PA) phonons of a piezoelectric substrate (GaAs) is calculated as a function of temperature T and electron concentration n s. At a very low temperature, [Formula: see text] is found to be much greater than [Formula: see text] of the intrinsic deformation potential of acoustic (DA) phonons of the graphene. There is a crossover of [Formula: see text] and [Formula: see text] at around ~5 K. In graphene samples of about >10 µm size, we predict S (g) ~ 20 µV at 10 K, which is much greater than the diffusion component of the thermopower and can be experimentally observed. In the Bloch-Gruneisen (BG) regime T and n s dependence are, respectively, given by the power laws [Formula: see text] ([Formula: see text]) ~ T (2)(T (3)) and [Formula: see text], [Formula: see text] ~ [Formula: see text]. The T(n s) dependence is the manifestation of the 2D phonons (Dirac phase of the electrons). The effect of the screening is discussed. Analogous to Herring's law (S (g) μ p ~ T (-1)), we predict a new relation S (g) μ p ~ [Formula: see text], where μ p is the phonon-limited mobility. We suggest that the n s dependent measurements will play a more significant role in identifying the Dirac phase and the effect of screening.Private Fellowship
Microscopic metallic air-bridge arrays for connecting quantum devices
We present a single-exposure fabrication technique for a very large array of microscopic air-bridges using a tri-layer resist process with electron-beam lithography. The technique is capable of forming air-bridges with strong metal-metal or metal-substrate connections. This was demonstrated by its application in an electron tunneling device consisting of 400 identical surface gates for defining quantum wires, where the air-bridges are used as suspended connections for the surface gates. This technique enables us to create a large array of uniform one-dimensional channels that are open at both ends. In this article, we outline the details of the fabrication process, together with a study and the solution of the challenges present in the development of the technique, which includes the use of water-IPA (isopropyl alcohol) developer, calibration of the resist thickness, and numerical simulation of the development.</jats:p
- …
