8 research outputs found
Belediye Müzesi
Taha Toros Arşivi, Dosya No: 114-Müzelerİstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033
Characteristic Airflow Patterns During Inspiration and Expiration: Experimental and Numerical Investigation
A simplified experimental nasal model was designed and an experimental setup was developed to facilitate both inspiratory and expiratory flow measurements. Particle image velocimetry (PIV) and resistance measurements were conducted. The purpose of this work was primarily to demonstrate a simple way of carrying out experiments for a replica human nose in order to validate numerical studies. The characteristic recirculatory patterns observed explicitly as a consequence of inspiration and expiration were investigated. The resistance study showed similar patterns of resistance for both experimental and numerical results for various flow rates. The PIV results showed that inspiratory and expiratory flows had characteristic flow patterns that can be distinguished based on their recirculatory flow patterns
A high-flow nasal cannula system with relatively low flow effectively washes out CO2 from the anatomical dead space in a sophisticated respiratory model made by a 3D printer
In vitro models for simulating swallowing
This chapter gives an overview of the in vitro models that are currently used for studying swallowing. The focus is on the construction, geometry, and performance of mechanical models. Swallowing simulations and mathematical modeling are also considered. The in vitro models that are concerned with the oral, pharyngeal, and esophageal phases of swallowing linked to bolus properties are discussed. The pharyngeal phase is given special consideration, as it is involved in both food transport to the stomach and air transport to the lungs, and therefore constitutes the most critical phase of swallowing
A deformable template method for describing and averaging the anatomical variation of the human nasal cavity
Current evidence for the effectiveness of heated and humidified high flow nasal cannula supportive therapy in adult patients with respiratory failure.
High flow nasal cannula (HFNC) supportive therapy has emerged as a safe, useful therapy in patients with respiratory failure, improving oxygenation and comfort. Recently several clinical trials have analyzed the effectiveness of HFNC therapy in different clinical situations and have reported promising results. Here we review the current knowledge about HFNC therapy, from its mechanisms of action to its effects on outcomes in different clinical situations.Fisher & Paykel support a post doctoral fellow in Medical Research at the Hospital del Mar Institute. OR, GH, and JRM have had travel expenses covered by Fisher & Paykel
