1,410 research outputs found
Intravital Microscopy Optimization for Murine Tail Lymphedema Model
Background: Lymphedema is limb swelling caused by lymphatic dysfunction. It occurs in 30% of patients that undergo axillary lymph node dissection in the treatment of breast cancer. It can cause pain, impair function, and decrease quality of life. Lymphedema is treated with compression, excisional procedures and microsurgical physiologic procedures. There is no cure for this disease. The murine tail model of lymphedema is an established animal model for lymphedema. Visualization of lymphatics and functional assessment remains a challenge.
Project Rationale: Immunohistopathology and qRT-PCR are two commonly used in vitro techniques for molecular assessment of lymphatics in animal tissues. These methods provide incomplete information about the structure/function of lymphatics and introduce the confounder of harvested tissue. Methods of functional evaluation such as lymphoscintigraphy or lymphangiography show transit of dyes through lymphatics without high resolution imaging of the lymphatic vessels. Intravital two-photon microscopy (IVM) addresses these disadvantages through real-time imaging of subcellular level biological processes in live animals. The goal of this project is to optimize IVM methods for the assessment of functional lymphangiogenesis in the murine tail lymphedema model.
Methodology Development: A full-thickness skin excision is performed near the base of the tail in C57BL/6 mice. The lymphatic trunks are then surgically transected. Gene-based therapy is delivered to the tail at the surgical site. At 10 days post-treatment, a second full-thickness skin excision is made distal to the site of occlusion. FITC-Dextran (2000 kD) is injected at the distal tail for lymphatic uptake. Lymphatic vessels are visualized at the second skin excision site with the Leica SP8 Confocal/Multiphoton Microscope and assessed for number of branching points. Images are captured with Leica Application Suite Advanced Fluorescence Software and analyzed with Imaris Microscopy Image Analysis Software. This results in the ability of functional assessment of lymphatics and visualization of lymphangiogenesis following gene-based therapy
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Variation in life history traits and transcriptome associated with adaptation to diet shifts in the ladybird Cryptolaemus montrouzieri
Background: Despite the broad diet range of many predatory ladybirds, the mechanisms involved in their adaptation to diet shifts are not completely understood. Here, we explored how a primarily coccidophagous ladybird Cryptolaemus montrouzieri adapts to feeding on aphids.
Results: Based on the lower survival rate, longer developmental time, and lower adult body weight and reproduction rate of the predator, the aphid Megoura japonica proved being less suitable to support C. montrouzieri as compared with the citrus mealybug Planococcus citri. The results indicated up-regulation of genes related to ribosome and translation in fourth instars, which may be related to their suboptimal development. Also, several genes related to biochemical transport and metabolism, and detoxification were up-regulated as a result of adaptation to the changes in nutritional and non-nutritional (toxic) components of the prey.
Conclusion: Our results indicated that C. montrouzieri succeeded in feeding on aphids by regulation of genes related to development, digestion and detoxification. Thus, we argue that these candidate genes are valuable for further studies of the functional evolution of ladybirds led by diet shifts
Tension, Free Space, and Cell Damage in a Microfluidic Wound Healing Assay
We use a novel, microfluidics-based technique to deconstruct the classical wound healing scratch assay, decoupling the contribution of free space and cell damage on the migratory dynamics of an epithelial sheet. This method utilizes multiple laminar flows to selectively cleave cells enzymatically, and allows us to present a 'damage free' denudation. We therefore isolate the influence of free space on the onset of sheet migration. First, we observe denudation directly to measure the retraction in the cell sheet that occurs after cell-cell contact is broken, providing direct and quantitative evidence of strong tension within the sheet. We further probe the mechanical integrity of the sheet without denudation, instead using laminar flows to selectively inactivate actomyosin contractility. In both cases, retraction is observed over many cell diameters. We then extend this method and complement the enzymatic denudation with analogies to wounding, including gradients in signals associated with cell damage, such as reactive oxygen species, suspected to play a role in the induction of movement after wounding. These chemical factors are evaluated in combination with the enzymatic cleavage of cells, and are assessed for their influence on the collective migration of a non-abrasively denuded epithelial sheet. We conclude that free space alone is sufficient to induce movement, but this movement is predominantly limited to the leading edge, leaving cells further from the edge less able to move towards the wound. Surprisingly, when coupled with a gradient in ROS to simulate the chemical effects of abrasion however, motility was not restored, but further inhibited.Massachusetts Institute of Technology. Presidential FellowshipNational Institutes of Health (U.S.). Biotechnology Training FellowshipSingapore-MIT Alliance for Research and TechnologyMassachusetts Institute of Biotechnology Training GrantMassachusetts Institute of Technology (Open-source Funding
Endurance, resistance and resilience in the South African health care system: case studies to demonstrate mechanisms of coping within a constrained system
BACKGROUND: South Africa is at present undertaking a series of reforms to transform public health services to make them more effective and responsive to patient and provider needs. A key focus of these reforms is primary care and its overburdened, somewhat dysfunctional and hierarchical nature. This comparative case study examines how patients and providers respond in this system and cope with its systemic demands through mechanisms of endurance, resistance and resilience, using coping and agency literatures as the theoretical lenses. METHODS: As part of a larger research project carried out between 2009 and 2010, this study conducted semi-structured interviews and observations at health facilities in three South African provinces. This study explored patient experiences of access to health care, in particular, ways of coping and how health care providers cope with the health care system’s realities. From this interpretive base, four cases (two patients, two providers) were selected as they best informed on endurance, resistance and resilience. Some commentary from other respondents is added to underline the more ubiquitous nature of these coping mechanisms. RESULTS: The cases of four individuals highlight the complexity of different forms of endurance and passivity, emotion- and problem-based coping with health care interactions in an overburdened, under-resourced and, in some instances, poorly managed system. Patients’ narratives show the micro-practices they use to cope with their treatment, by not recognizing victimhood and sometimes practising unhealthy behaviours. Providers indicate how they cope in their work situations by using peer support and becoming knowledgeable in providing good service. CONCLUSIONS: Resistance and resilience narratives show the adaptive power of individuals in dealing with difficult illness, circumstances or treatment settings. They permit individuals to do more than endure (itself a coping mechanism) their circumstances, though resistance and resilience may be limited. These are individual responses to systemic forces. To transform health care, mutually supportive interactions are required among and between both patients and providers but their nature, as micro-practices, may show a way forward for system change
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
A new species of Argyromys (Rodentia, Mammalia) from the oligocene of the valley of lakes (Mongolia): its importance for palaeobiogeographical homogeneity across Mongolia, China and Kazakhstan
We describe a new species of Rodentia (Mammalia), Argyromys cicigei sp. nov. from Toglorhoi (fossil bed TGW-A/2a) in Mongolia and Ulantatal (fossil beds UTL 1 and UTL 7) in China. Its tooth morphology differs from the type species Argyromys aralensis from Akespe in Kazakhstan by smaller size and simpler structures. Argyromys has been assigned in different families of Muroidea, such as Tachyoryctoididae and Spalacidae. However, the presence of common characters indicates a closer relationship of Argyromys with the genera of Cricetidae s.l. (subfamilies Eucricetodontinae; Cricetopinae; Cricetodontinae and Gobicricetodontinae among others) from Asia than with the earliest representatives of Spalacidae or the endemic Tachyoryctoididae. Argyromys cicigei sp. nov. possesses a simple anterocone and anteroconid in the upper and lower first molars, respectively, which is characteristic for Cricetidae s.l. It has a flat occlusal surface in worn specimens; weakly-developed posterolophs; an oblique protolophule and metaloph on the upper molars and it lacks a labial anterolophid on the m1. These traits are also typical of the Oligocene genera Aralocricetodon and Plesiodipus, included in the subfamilies Cricetodontinae and Gobicricetodontinae respectively. The cladistic analysis performed here supports this hypothesis. The clade formed by Argyromys species is grouped with other cricetid taxa (s.l). Spalacids, however, form a different clade, as do the tachyoryctoids. Previous authors state that the Aral Formation (Kazakhstan) should be dated to the Oligocene instead of the Miocene, based on the presence of several taxa. The finds of Argyromys in both regions supports the statement that they are closer in age than previously thought. The occurrence of Argyromys in Kazakhstan, Mongolia and China evidences the biogeographic unity of the Central Asian bioprovince during the Oligocene
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation
Chronic wound fluids have elevated concentration of human neutrophil elastase (HNE) which can be used as inflammation/infection marker. Our goal is to develop functional materials for fast diagnosis of wound inflammation/infection by using HNE as a specific marker. For that, fluorogenic peptides with a HNE-specific cleavage sequence were incorporated into traditional textile dressings, to allow real-time detection of the wound status. Two different fluorogenic approaches were studied in terms of intensity of the signal generated upon HNE addition: a fluorophore 7-amino-4-trifluormethylcoumarin (AFC) conjugated to a HNE-specific peptide and two fluorophore/quencher pairs (FAM/Dabcyl and EDANS/Dabcyl) coupled to a similar peptide as a Förster resonance energy transfer (FRET) strategy. Also, two immobilization methods were tested: sonochemistry immobilization onto a cotton bandage and glutaraldehyde (GTA)-assisted chemical crosslinking onto a polyamide dressing. The immobilized fluorogenic AFC peptide showed an intense fluorescence emission in the presence of HNE. HNE also induced an enhanced fluorescent signal with the EDANS/Dabcyl FRET peptide which showed to be a more sensitive and effective strategy than the AFC peptide. However, its chemical immobilization onto the polyamide dressing greatly decreased its detection, mainly due to the more difficult access of the enzyme to the cleavage sequence of the immobilized peptide. After optimization of the in situ immobilization, it will be possible to use these fluorescence-functionalized dressings for an effective and specific monitoring of chronic wounds by simply using a portable ultraviolet (UV) light source. We envision that the development of this point-of-care medical device for wound control will have a great impact on patients life quality and reduction of costs on health care system.This study was funded by the European project InFact-Functional materials for fast diagnosis of wound infection (FP7-NMP-2013-SME-7-grant agreement no. 604278). The work done at Centre of Biological Engineering (CEB) was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte 2020-Programa Operacional Regional do Norte
Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV
Peer reviewe
- …
