1 research outputs found
Use of hierarchical models to evaluate performance of cardiac surgery centres in the Italian CABG outcome study
<p>Abstract</p> <p>Background</p> <p>Hierarchical modelling represents a statistical method used to analyze nested data, as those concerning patients afferent to different hospitals. Aim of this paper is to build a hierarchical regression model using data from the "Italian CABG outcome study" in order to evaluate the amount of differences in adjusted mortality rates attributable to differences between centres.</p> <p>Methods</p> <p>The study population consists of all adult patients undergoing an isolated CABG between 2002–2004 in the 64 participating cardiac surgery centres.</p> <p>A risk adjustment model was developed using a classical single-level regression. In the multilevel approach, the variable "clinical-centre" was employed as a group-level identifier. The intraclass correlation coefficient was used to estimate the proportion of variability in mortality between groups. Group-level residuals were adopted to evaluate the effect of clinical centre on mortality and to compare hospitals performance. Spearman correlation coefficient of ranks (<it>ρ</it>) was used to compare results from classical and hierarchical model.</p> <p>Results</p> <p>The study population was made of 34,310 subjects (mortality rate = 2.61%; range 0.33–7.63). The multilevel model estimated that 10.1% of total variability in mortality was explained by differences between centres. The analysis of group-level residuals highlighted 3 centres (VS 8 in the classical methodology) with estimated mortality rates lower than the mean and 11 centres (VS 7) with rates significantly higher. Results from the two methodologies were comparable (<it>ρ </it>= 0.99).</p> <p>Conclusion</p> <p>Despite known individual risk-factors were accounted for in the single-level model, the high variability explained by the variable "clinical-centre" states its importance in predicting 30-day mortality after CABG.</p
