16 research outputs found

    Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model

    Get PDF
    Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches

    Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process

    Get PDF
    Tissue-specific stem cells are considered to have a limited differentiation potential. Recently, this notion was challenged by reports that showed a broader differentiation potential of neural stem cells, in vitro and in vivo, although the molecular mechanisms that regulate plasticity of neural stem cells are unknown. Here, we report that neural stem cells derived from mouse embryonic cortex respond to Lif and serum in vitro and undergo epithelial to mesenchymal transition (EMT)-mediated dedifferentiation process within 48 h, together with transient upregulation of pluripotency markers and, more notably, upregulation of mesendoderm genes, Brachyury (T) and Sox17. These induced putative mesendoderm cells were injected into early gastrulating chick embryos, which revealed that they integrated more efficiently into mesoderm and endoderm lineages compared to non-induced cells. We also found that TGFβ and Jak/Stat pathways are necessary but not sufficient for the induction of mesendodermal phenotype in neural stem cells. These results provide insights into the regulation of plasticity of neural stem cells through EMT. Dissecting the regulatory pathways involved in these processes may help to gain control over cell fate decisions

    Current perspectives of the signaling pathways directing neural crest induction

    Get PDF
    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse

    Generation of Neural Crest Progenitors from Human Pluripotent Stem Cells

    No full text
    There are a vast range of diseases and disorders that are neurocristopathic in origin, including Hirschsprung\u27s disease, pheochromocytoma, familial dysautonomia, craniofacial disorders, and melanomas. Having a source of human neural crest cells is highly valuable for investigating potential treatments for such diseases. This chapter describes a robust and well-characterized protocol for deriving neural crest from human pluripotent stem cells (hPSCs), which can then be differentiated to neuronal and non-neuronal lineages. The protocol is adapted to suit hPSC maintenance as a monolayer bulk culture or as manual-passaged colonies, which makes it widely applicable to researchers that may use different systems for hPSC maintenance

    Human Deciduous Teeth Stem Cells (SHED) Display Neural Crest Signature Characters

    No full text
    Human dental tissues are sources of neural crest origin multipotent stem cells whose regenerative potential is a focus of extensive studies. Rational programming of clinical applications requires a more detailed knowledge of the characters inherited from neural crest. Investigation of neural crest cells generated from human pluripotent stem cells provided opportunity for their comparison with the postnatal dental cells. The purpose of this study was to investigate the role of the culture conditions in the expression by dental cells of neural crest characters. The results of the study demonstrate that specific neural crest cells requirements, serum-free, active WNT signaling and inactive SMAD 2/3, are needed for the activity of the neural crest characters in dental cells. Specifically, the decreasing concentration of fetal bovine serum (FBS) from regularly used for dental cells 10% to 2% and below, or using serum-free medium, led to emergence of a subset of epithelial-like cells expressing the two key neural crest markers, p75 and HNK-1. Further, the serum-free medium supplemented with neural crest signaling requirements (WNT inducer BIO and TGF-β inhibitor REPSOX), induced epithelial-like phenotype, upregulated the p75, Sox10 and E-Cadherin and downregulated the mesenchymal genes (SNAIL1, ZEB1, TWIST). An expansion medium containing 2% FBS allowed to obtain an epithelial/mesenchymal SHED population showing high proliferation, clonogenic, multi-lineage differentiation capacities. Future experiments will be required to determine the effects of these features on regenerative potential of this novel SHED population.</div
    corecore