197 research outputs found
Obesity, Ethnicity, and Risk of Critical Care, Mechanical Ventilation, and Mortality in Patients Admitted to Hospital with COVID-19: Analysis of the ISARIC CCP-UK Cohort
OBJECTIVE: The aim of this study was to investigate the association of obesity with in-hospital coronavirus disease 2019 (COVID-19) outcomes in different ethnic groups. METHODS: Patients admitted to hospital with COVID-19 in the United Kingdom through the Clinical Characterisation Protocol UK (CCP-UK) developed by the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) were included from February 6 to October 12, 2020. Ethnicity was classified as White, South Asian, Black, and other minority ethnic groups. Outcomes were admission to critical care, mechanical ventilation, and in-hospital mortality, adjusted for age, sex, and chronic diseases. RESULTS: Of the participants included, 54,254 (age = 76 years; 45.0% women) were White, 3,728 (57 years; 41.1% women) were South Asian, 2,523 (58 years; 44.9% women) were Black, and 5,427 (61 years; 40.8% women) were other ethnicities. Obesity was associated with all outcomes in all ethnic groups, with associations strongest for black ethnicities. When stratified by ethnicity and obesity status, the odds ratios for admission to critical care, mechanical ventilation, and mortality in black ethnicities with obesity were 3.91 (3.13-4.88), 5.03 (3.94-6.63), and 1.93 (1.49-2.51), respectively, compared with White ethnicities without obesity. CONCLUSIONS: Obesity was associated with an elevated risk of in-hospital COVID-19 outcomes in all ethnic groups, with associations strongest in Black ethnicities
Neuromuscular training to enhance sensorimotor and functional deficits in subjects with chronic ankle instability: A systematic review and best evidence synthesis
<p>Abstract</p> <p>Objective</p> <p>To summarise the available evidence for the efficacy of neuromuscular training in enhancing sensorimotor and functional deficits in subjects with chronic ankle instability (CAI).</p> <p>Design</p> <p>Systematic review with best evidence synthesis.</p> <p>Data Sources</p> <p>An electronic search was conducted through December 2009, limited to studies published in the English language, using the Pubmed, CINAHL, Embase, and SPORTDiscus databases. Reference screening of all included articles was also undertaken.</p> <p>Methods</p> <p>Studies were selected if the design was a RCT, quasi RCT, or a CCT; the patients were adolescents or adults with confirmed CAI; and one of the treatment options consisted of a neuromuscular training programme. The primary investigator independently assessed the risk of study bias and extracted relevant data. Due to clinical heterogeneity, data was analysed using a best-evidence synthesis.</p> <p>Results</p> <p>Fourteen studies were included in the review. Meta-analysis with statistical pooling of data was not possible, as the studies were considered too heterogeneous. Instead a best evidence synthesis was undertaken. There is limited to moderate evidence to support improvements in dynamic postural stability, and patient perceived functional stability through neuromuscular training in subjects with CAI. There is limited evidence of effectiveness for neuromuscular training for improving static postural stability, active and passive joint position sense (JPS), isometric strength, muscle onset latencies, shank/rearfoot coupling, and a reduction in injury recurrence rates. There is limited evidence of no effectiveness for improvements in muscle fatigue following neuromuscular intervention.</p> <p>Conclusion</p> <p>There is limited to moderate evidence of effectiveness in favour of neuromuscular training for various measures of static and dynamic postural stability, active and passive JPS, isometric strength, muscle onset latencies, shank/rearfoot coupling and injury recurrence rates. Strong evidence of effectiveness was lacking for all outcome measures. All but one of the studies included in the review were deemed to have a high risk of bias, and most studies were lacking sufficient power. Therefore, in future we recommend conducting higher quality RCTs using appropriate outcomes to assess for the effectiveness of neuromuscular training in overcoming sensorimotor deficits in subjects with CAI.</p
Impact of cardiometabolic multimorbidity and ethnicity on cardiovascular/renal complications in patients with COVID-19
OBJECTIVE: Using a large national database of people hospitalised with COVID-19, we investigated the contribution of cardio-metabolic conditions, multi-morbidity and ethnicity on the risk of in-hospital cardiovascular complications and death. METHODS: A multicentre, prospective cohort study in 302 UK healthcare facilities of adults hospitalised with COVID-19 between 6 February 2020 and 16 March 2021. Logistic models were used to explore associations between baseline patient ethnicity, cardiometabolic conditions and multimorbidity (0, 1, 2, >2 conditions), and in-hospital cardiovascular complications (heart failure, arrhythmia, cardiac ischaemia, cardiac arrest, coagulation complications, stroke), renal injury and death. RESULTS: Of 65 624 patients hospitalised with COVID-19, 44 598 (68.0%) reported at least one cardiometabolic condition on admission. Cardiovascular/renal complications or death occurred in 24 609 (38.0%) patients. Baseline cardiometabolic conditions were independently associated with increased odds of in-hospital complications and this risk increased in the presence of cardiometabolic multimorbidity. For example, compared with having no cardiometabolic conditions, 1, 2 or ≥3 conditions was associated with 1.46 (95% CI 1.39 to 1.54), 2.04 (95% CI 1.93 to 2.15) and 3.10 (95% CI 2.92 to 3.29) times higher odds of any cardiovascular/renal complication, respectively. A similar pattern was observed for all-cause death. Compared with the white group, the South Asian (OR 1.19, 95% CI 1.10 to 1.29) and black (OR 1.53 to 95% CI 1.37 to 1.72) ethnic groups had higher risk of any cardiovascular/renal complication. CONCLUSIONS: In hospitalised patients with COVID-19, cardiovascular complications or death impacts just under half of all patients, with the highest risk in those of South Asian or Black ethnicity and in patients with cardiometabolic multimorbidit
Validation of pooled genotyping on the Affymetrix 500 k and SNP6.0 genotyping platforms using the polynomial-based probe-specific correction
10.1186/1471-2156-10-82BMC Genetics10-BGME
Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer
Effect of resveratrol on alcohol-induced mortality and liver lesions in mice
BACKGROUND: Resveratrol is a polyphenol with important antiinflammatory and antioxidant properties. We investigated the effect of resveratrol on alcohol-induced mortality and liver lesions in mice. METHODS: Mice were randomly distributed into four groups (control, resveratrol-treated control, alcohol and resveratrol-treated alcohol). Chronic alcohol intoxication was induced by progressively administering alcohol in drinking water up to 40% v/v. The mice administered resveratrol received 10 mg/ml in drinking water. The animals had free access to standard diet. Blood levels were determined for transaminases, IL-1 and TNF-α. A histological evaluation was made of liver damage, and survival among the animals was recorded. RESULTS: Transaminase concentration was significantly higher in the alcohol group than in the rest of the groups (p < 0.05). IL-1 levels were significantly reduced in the alcohol plus resveratrol group compared with the alcohol group (p < 0.05). TNF-α was not detected in any group. Histologically, the liver lesions were more severe in the alcohol group, though no significant differences between groups were observed. Mortality in the alcohol group was 78% in the seventh week, versus 22% in the alcohol plus resveratrol group (p < 0.001). All mice in the alcohol group died before the ninth week. CONCLUSION: The results obtained suggest that resveratrol reduces mortality and liver damage in mice
Heterogeneous activation of the TGFβ pathway in glioblastomas identified by gene expression-based classification using TGFβ-responsive genes
<p>Abstract</p> <p>Background</p> <p>TGFβ has emerged as an attractive target for the therapeutic intervention of glioblastomas. Aberrant TGFβ overproduction in glioblastoma and other high-grade gliomas has been reported, however, to date, none of these reports has systematically examined the components of TGFβ signaling to gain a comprehensive view of TGFβ activation in large cohorts of human glioma patients.</p> <p>Methods</p> <p>TGFβ activation in mammalian cells leads to a transcriptional program that typically affects 5–10% of the genes in the genome. To systematically examine the status of TGFβ activation in high-grade glial tumors, we compiled a gene set of transcriptional response to TGFβ stimulation from tissue culture and <it>in vivo </it>animal studies. These genes were used to examine the status of TGFβ activation in high-grade gliomas including a large cohort of glioblastomas. Unsupervised and supervised classification analysis was performed in two independent, publicly available glioma microarray datasets.</p> <p>Results</p> <p>Unsupervised and supervised classification using the TGFβ-responsive gene list in two independent glial tumor gene expression data sets revealed various levels of TGFβ activation in these tumors. Among glioblastomas, one of the most devastating human cancers, two subgroups were identified that showed distinct TGFβ activation patterns as measured from transcriptional responses. Approximately 62% of glioblastoma samples analyzed showed strong TGFβ activation, while the rest showed a weak TGFβ transcriptional response.</p> <p>Conclusion</p> <p>Our findings suggest heterogeneous TGFβ activation in glioblastomas, which may cause potential differences in responses to anti-TGFβ therapies in these two distinct subgroups of glioblastomas patients.</p
Lipopolysaccharides Impair Insulin Gene Expression in Isolated Islets of Langerhans via Toll-Like Receptor-4 and NF-κB Signalling
BACKGROUND:Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets. METHODOLOGY/PRINCIPAL FINDINGS:A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway. CONCLUSIONS/SIGNIFICANCE:Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function
Interventions to promote young people’s physical activity: Issues, implications and recommendations for practice
- …
