919 research outputs found

    The influence of clearance on friction, lubrication and squeaking in large diameter metal-on-metal hip replacements

    Get PDF
    Large diameter metal-on-metal bearings (MOM) are becoming increasingly popular, addressing the needs of young and more active patients. Clinical data has shown excellent short-to-mid-term results, though incidences of transient squeaking have been noted between implantation and up to 2 years post-operative. Geometric design features, such as clearance, have been significant in influencing the performance of the bearings. Sets of MOM bearings with different clearances were investigated in this study using a hip friction simulator to examine the influence of clearance on friction, lubrication and squeaking. The friction factor was found to be highest in the largest clearance bearings under all test conditions. The incidence of squeaking was also highest in the large clearance bearings, with all bearings in this group squeaking throughout the study. A very low incidence of squeaking was observed in the other two clearance groups. The measured lubricating film was found to be lowest in the large clearance bearings. This study suggests that increasing the bearing clearance results in reduced lubricant film thickness, increased friction and an increased incidence of squeaking

    The school environment and adolescent physical activity and sedentary behaviour : A mixed-studies systematic review

    Get PDF
    There is increasing academic and policy interest in interventions aiming to promote young people's health by ensuring that the school environment supports healthy behaviours. The purpose of this review was to summarize the current evidence on school-based policy, physical and social-environmental influences on adolescent physical activity and sedentary behaviour. Electronic databases were searched to identify studies that (1) involved healthy adolescents (11-18years old), (2) investigated school-environmental influences and (3) reported a physical activity and/or sedentary behaviour outcome or theme. Findings were synthesized using a non-quantitative synthesis and thematic analysis. Ninety-three papers of mixed methodological quality were included. A range of school-based policy (e.g. break time length), physical (e.g. facilities) and social-environmental (e.g. teacher behaviours) factors were associated with adolescent physical activity, with limited research on sedentary behaviour. The mixed-studies synthesis revealed the importance of specific activity settings (type and location) and intramural sport opportunities for all students. Important physical education-related factors were a mastery-oriented motivational climate and autonomy supportive teaching behaviours. Qualitative evidence highlighted the influence of the wider school climate and shed light on complexities of the associations observed in the quantitative literature. This review identifies future research needs and discusses potential intervention approaches to be considered

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Resistance to Wheat streak mosaic virus identified in synthetic wheat lines

    Get PDF
    Citation: Shoup Rupp, J. L., Simon, Z. G., Gillett-Walker, B., & Fellers, J. P. (2014). Resistance to Wheat streak mosaic virus identified in synthetic wheat lines. Retrieved from http://krex.ksu.eduWheat streak mosaic virus (WSMV) is an important pathogen in wheat that causes significant yield losses each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resistance genes to WSMV. Two resistance genes have been derived from Thinopyrum intermedium through chromosome engineering, while a third gene was transferred from bread wheat through classical breeding. New sources of resistance are needed and synthetic wheat lines provide a means of accessing genetic variability in wheat progenitors. A collection of wheat synthetic lines was screened for WSMV resistance. Four lines, 07-SYN-27, -106, -164, and -383 had significant levels of resistance. Resistance was effective at 18 °C and virus accumulation was similar to the resistant control, WGGRC50 containing Wsm1. At 25 °C, resistance was no longer effective and virus accumulation was similar to the susceptible control, Tomahawk

    Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways

    Get PDF
    Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (,23%) than the other two, COPI (,9%) and COPII (,8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of evolutionary adaptability in the three routes

    Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017

    Get PDF
    Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Fishers who rely on mangroves: Modelling and mapping the global intensity of mangrove-associated fisheries

    Get PDF
    Mangroves are critical nursery habitats for fish and invertebrates, providing livelihoods for many coastal communities. Despite their importance, there is currently no estimate of the number of fishers engaged in mangrove associated fisheries, nor of the fishing intensity associated with mangroves at a global scale. We address these gaps by developing a global model of mangrove associated fisher numbers and mangrove fishing intensity. To develop the model, we undertook a three-round Delphi process with mangrove fisheries experts to identify the key drivers of mangrove fishing intensity. We then developed a conceptual model of intensity of mangrove fishing using those factors identified both as being important and for which appropriate global data could be found or developed. These factors were non-urban population, distance to market, distance to mangroves and other fishing grounds, and storm events. By projecting this conceptual model using geospatial datasets, we were able to estimate the number and distribution of mangrove associated fishers and the intensity of fishing in mangroves. We estimate there are 4.1 million mangrove associated fishers globally, with the highest number of mangrove fishers found in Indonesia, India, Bangladesh, Myanmar, and Brazil. Mangrove fishing intensity was greatest throughout Asia, and to a lesser extent West and Central Africa, and Central and South America
    corecore