4,722 research outputs found
XMM-Newton discovery of O VII emission from warm gas in clusters of galaxies
XMM-Newton recently discovered O VII line emission from ~2 million K gas near
the outer parts of several clusters of galaxies. This emission is attributed to
the Warm-Hot Intergalactic Medium. The original sample of clusters studied for
this purpose has been extended and two more clusters with a soft X-ray excess
have been found. We discuss the physical properties of the warm gas, in
particular the density, spatial extent, abundances and temperature.Comment: 8 pages, 3 figures, conference "Soft X-ray emission from clusters of
galaxies and related phenomena", ed. R. Lieu, Kluwer, in pres
Advantages and dynamics of urban agglomeration development on Yangtze River Delta
National Natural Science Foundation of China 40971101 40901087Urban agglomeration on Yangtze River Delta (UA-YRD) had some advantages in the aspects of water, land, ecological environment, location and transportation. Relying on the resource-environment bases and other advantages, UA-YRD has achieved great development. Based on index system and model of comprehensive evaluation, the paper calculates the development level of UA-YRD since 1978. The result shows that from 1978 to 2007, the development level increased year by year at an annual rate of 0.0333, and the process of development could be divided into three stages, i.e. low-speed development stage (1978-1991), rapid development stage (1991-2000), and high-speed development stage (2000-2007). The speeds are 0.0083, 0.0356 and 0.0766, respectively. During the 30-year development, foreign economic activity has the greatest effect on development, followed by transportation, industrial economic activity and telecommunication (in order). Additionally, different driving forces have different effects in different stages. The paper suggests that more attention should be paid to the high-speed development stage and the important driving forces to drive its development. At the same time, the limitation of resource and environment should not be neglected and a long effective mechanism needs to be established to sustain harmonious development among the UA development, resource utilization and environmental protection. Some comparative studies should be carried out urgently to support and promote sustainable development of UA effectively, especially towards evolution, driving forces and braking forces
One-step deposition of Au nanoparticles onto chemically modified ceramic hollow spheres via self-assembly
Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition
Showing A quantification of GFP-positive cells in the lung after intravenous injection of MKPCs in five-sixths nephrectomized mice (y axis shows the number of cells, while the x axis (FL1-H) shows the fluorescence intensity; M1 is the area of GFP-positive cells) and B immunohistochemistry of the lung after intravenous injection of MKPCs into a mouse that underwent five-sixths nephrectomy. Few GFP positive cells were found in the lung at the first day but there were no GFP-positive cells at week 14. (TIFF 2253 kb
Scalp acupuncture for acute ischemic stroke: a meta-analysis of randomized controlled trials
Scalp acupuncture (SA) is a commonly used therapeutic approach for stroke throughout China and elsewhere in the world. The objective of this study was to assess clinical efficacy and safety of SA for acute ischemic stroke. A systematical literature search of 6 databases was conducted to identify randomized controlled trials (RCTs) of SA for acute ischemic stroke compared with western conventional medicines (WCMs). All statistical analyses were performed by the Rev Man Version 5.0. Eight studies with 538 participants were included in the studies. The studies were deemed to have an unclear risk of bias based on the Cochrane Back Review Group. Compared with the WCM, 6 RCTs showed significant effects of SA for improving neurological deficit scores (P < 0.01); 4 RCTs showed significant effects of SA for favoring the clinical effective rate (P < 0.01) However, the adverse events have not been documented. In conclusion, SA appears to be able to improve neurological deficit score and the clinical effective rate when compared with WCM, though the beneficial effect from SA is possibly overvalued because of generally low methodology of the included trials. No evidence is available for adverse effects. Rigorous well-designed clinical trials are needed.published_or_final_versio
Topological Photonics
Topology is revolutionizing photonics, bringing with it new theoretical
discoveries and a wealth of potential applications. This field was inspired by
the discovery of topological insulators, in which interfacial electrons
transport without dissipation even in the presence of impurities. Similarly,
new optical mirrors of different wave-vector space topologies have been
constructed to support new states of light propagating at their interfaces.
These novel waveguides allow light to flow around large imperfections without
back-reflection. The present review explains the underlying principles and
highlights the major findings in photonic crystals, coupled resonators,
metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1
tabl
Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials
Recent progress in understanding the topological properties of condensed
matter has led to the discovery of time-reversal invariant topological
insulators. Because of limitations imposed by nature, topologically non-trivial
electronic order seems to be uncommon except in small-band-gap semiconductors
with strong spin-orbit interactions. In this Article we show that artificial
electromagnetic structures, known as metamaterials, provide an attractive
platform for designing photonic analogues of topological insulators. We
demonstrate that a judicious choice of the metamaterial parameters can create
photonic phases that support a pair of helical edge states, and that these edge
states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure
Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor
The latest discovery of high temperature superconductivity signature in
single-layer FeSe is significant because it is possible to break the
superconducting critical temperature ceiling (maximum Tc~55 K) that has been
stagnant since the discovery of Fe-based superconductivity in 2008. It also
blows the superconductivity community by surprise because such a high Tc is
unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at
ambient pressure which can be enhanced to 38 K under high pressure. The Tc is
still unusually high even considering the newly-discovered intercalated FeSe
system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient
pressure and possible Tc near 48 K under high pressure. Particularly
interesting is that such a high temperature superconductivity occurs in a
single-layer FeSe system that is considered as a key building block of the
Fe-based superconductors. Understanding the origin of high temperature
superconductivity in such a strictly two-dimensional FeSe system is crucial to
understanding the superconductivity mechanism in Fe-based superconductors in
particular, and providing key insights on how to achieve high temperature
superconductivity in general. Here we report distinct electronic structure
associated with the single-layer FeSe superconductor. Its Fermi surface
topology is different from other Fe-based superconductors; it consists only of
electron pockets near the zone corner without indication of any Fermi surface
around the zone center. Our observation of large and nearly isotropic
superconducting gap in this strictly two-dimensional system rules out existence
of node in the superconducting gap. These results have provided an unambiguous
case that such a unique electronic structure is favorable for realizing high
temperature superconductivity
Magnetism and its microscopic origin in iron-based high-temperature superconductors
High-temperature superconductivity in the iron-based materials emerges from,
or sometimes coexists with, their metallic or insulating parent compound
states. This is surprising since these undoped states display dramatically
different antiferromagnetic (AF) spin arrangements and Nel
temperatures. Although there is general consensus that magnetic interactions
are important for superconductivity, much is still unknown concerning the
microscopic origin of the magnetic states. In this review, progress in this
area is summarized, focusing on recent experimental and theoretical results and
discussing their microscopic implications. It is concluded that the parent
compounds are in a state that is more complex than implied by a simple Fermi
surface nesting scenario, and a dual description including both itinerant and
localized degrees of freedom is needed to properly describe these fascinating
materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in
Nature Physic
Past Achievements and Future Challenges in 3D Photonic Metamaterials
Photonic metamaterials are man-made structures composed of tailored micro- or
nanostructured metallo-dielectric sub-wavelength building blocks that are
densely packed into an effective material. This deceptively simple, yet
powerful, truly revolutionary concept allows for achieving novel, unusual, and
sometimes even unheard-of optical properties, such as magnetism at optical
frequencies, negative refractive indices, large positive refractive indices,
zero reflection via impedance matching, perfect absorption, giant circular
dichroism, or enhanced nonlinear optical properties. Possible applications of
metamaterials comprise ultrahigh-resolution imaging systems, compact
polarization optics, and cloaking devices. This review describes the
experimental progress recently made fabricating three-dimensional metamaterial
structures and discusses some remaining future challenges
- …
