2,377 research outputs found

    American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) Joint Consensus Statement on Optimal Analgesia within an Enhanced Recovery Pathway for Colorectal Surgery: Part 2-From PACU to the Transition Home.

    Get PDF
    BACKGROUND: Within an enhanced recovery pathway (ERP), the approach to treating pain should be multifaceted and the goal should be to deliver "optimal analgesia", which we define in this paper as a technique that optimizes patient comfort and facilitates functional recovery with the fewest medication side effects. METHODS: With input from a multidisciplinary, international group of experts and through a structured review of the literature and use of a modified Delphi method, we achieved consensus surrounding the topic of optimal analgesia in the perioperative period for colorectal surgery patients. DISCUSSION: As a part of the first Perioperative Quality Improvement (POQI) workgroup meeting, we sought to develop a consensus document describing a comprehensive, yet rational and practical, approach for developing an evidence-based plan for achieving optimal analgesia, specifically for a colorectal surgery within an ERP. The goal was twofold: (a) that application of this process would lead to improved patient outcomes and (b) that investigation of the questions raised would identify knowledge gaps to aid the direction for research into analgesia within ERPs in the years to come. This document details the evidence for a wide range of analgesic components, with particular focus on care in the post-anesthesia care unit, general care ward, and transition to home after discharge. The preoperative and operative consensus statement for analgesia was covered in Part 1 of this paper. The overall conclusion is that the combination of analgesic techniques employed in the perioperative period is not important as long as it is effective in delivering the goal of "optimal analgesia" as set forth in this document

    American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on optimal analgesia within an enhanced recovery pathway for colorectal surgery: part 1-from the preoperative period to PACU

    Get PDF
    BACKGROUND: Within an enhanced recovery pathway (ERP), the approach to treating pain should be multifaceted and the goal should be to deliver "optimal analgesia," which we define in this paper as a technique that optimizes patient comfort and facilitates functional recovery with the fewest medication side effects. METHODS: With input from a multi-disciplinary, international group of clinicians, and through a structured review of the literature and use of a modified Delphi method, we achieved consensus surrounding the topic of optimal analgesia in the perioperative period for colorectal surgery patients. DISCUSSION: As a part of the first Perioperative Quality Improvement (POQI) workgroup meeting, we sought to develop a consensus document describing a comprehensive, yet rational and practical, approach for developing an evidence-based plan for achieving optimal analgesia, specifically for a colorectal surgery ERP. The goal was two-fold: (a) that application of this process would lead to improved patient outcomes and (b) that investigation of the questions raised would identify knowledge gaps to aid the direction for research into analgesia within ERPs in the years to come. This document details the evidence for a wide range of analgesic components, with particular focus from the preoperative period to the post-anesthesia care unit. The overall conclusion is that the combination of analgesic techniques employed in the perioperative period is not important as long as it is effective in delivering the goal of optimal analgesia as set forth in this document

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Decrease of CD68 Synovial Macrophages in Celastrol Treated Arthritic Rats

    Get PDF
    Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by cellular infiltration into the joints, hyperproliferation of synovial cells and bone damage. Available treatments for RA only induce remission in around 30% of the patients, have important adverse effects and its use is limited by their high cost. Therefore, compounds that can control arthritis, with an acceptable safety profile and low production costs are still an unmet need. We have shown, in vitro, that celastrol inhibits both IL-1β and TNF, which play an important role in RA, and, in vivo, that celastrol has significant anti-inflammatory properties. Our main goal in this work was to test the effect of celastrol in the number of sublining CD68 macrophages (a biomarker of therapeutic response for novel RA treatments) and on the overall synovial tissue cellularity and joint structure in the adjuvant-induced rat model of arthritis (AIA).FCT fellowship: (SFRH/BPD/92860/2013)
    corecore