508 research outputs found
Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM
The β-barrel assembly machinery (BAM) is a ~203 kDa complex of five proteins (BamA-E) which is essential for viability in E. coli. BAM promotes the folding and insertion of β-barrel proteins into the outer membrane via a poorly understood mechanism. Several current models suggest that BAM functions through a ‘lateral gating’ motion of the β-barrel of BamA. Here we present a cryo-EM structure of the BamABCDE complex, at 4.9 Å resolution. The structure is in a laterally open conformation showing that gating is independent of BamB binding. We describe conformational changes throughout the complex, and interactions between BamA, B, D, and E and the detergent micelle that suggest communication between BAM and the lipid bilayer. Finally, using an enhanced reconstitution protocol and functional assays, we show that for the outer membrane protein OmpT, efficient folding in vitro requires lateral gating in BAM
Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.
Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy
Skp is a multivalent chaperone of outer membrane proteins
The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry–mass spectrometry (IMS–MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation
Outer membrane protein folding from an energy landscape perspective
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
Use of humanised rat basophilic leukaemia cell line RS-ATL8 for the assessment of allergenicity of Schistosoma mansoni proteins.
BACKGROUND
Parasite-specific IgE is thought to correlate with protection against Schistosoma mansoni infection or re-infection. Only a few molecular targets of the IgE response in S. mansoni infection have been characterised. A better insight into the basic mechanisms of anti-parasite immunity could be gained from a genome-wide characterisation of such S. mansoni allergens. This would have repercussions on our understanding of allergy and the development of safe and efficacious vaccinations against helminthic parasites.
METHODOLOGY/PRINCIPAL FINDINGS
A complete medium- to high-throughput amenable workflow, including important quality controls, is described, which enables the rapid translation of S. mansoni proteins using wheat germ lysate and subsequent assessment of potential allergenicity with a humanised Rat Basophilic Leukemia (RBL) reporter cell line. Cell-free translation is completed within 90 minutes, generating sufficient amounts of parasitic protein for rapid screening of allergenicity without any need for purification. Antigenic integrity is demonstrated using Western Blotting. After overnight incubation with infected individuals' serum, the RS-ATL8 reporter cell line is challenged with the complete wheat germ translation mixture and Luciferase activity measured, reporting cellular activation by the suspected allergen. The suitability of this system for characterization of novel S. mansoni allergens is demonstrated using well characterised plant and parasitic allergens such as Par j 2, SmTAL-1 and the IgE binding factor IPSE/alpha-1, expressed in wheat germ lysates and/or E. coli. SmTAL-1, but not SmTAL2 (used as a negative control), was able to activate the basophil reporter cell line.
CONCLUSION/SIGNIFICANCE
This method offers an accessible way for assessment of potential allergenicity of anti-helminthic vaccine candidates and is suitable for medium- to high-throughput studies using infected individual sera. It is also suitable for the study of the basis of allergenicity of helminthic proteins
Effects of chronic ascariasis and trichuriasis on cytokine production and gene expression in human blood: a cross-sectional study.
Background
Chronic soil-transmitted helminth (STH) infections are associated with effects on systemic immune responses that could be caused by alterations in immune homeostasis. To investigate this, we measured the impact in children of STH infections on cytokine responses and gene expression in unstimulated blood.
Methodology/Principal Findings
Sixty children were classified as having chronic, light, or no STH infections. Peripheral blood mononuclear cells were cultured in medium for 5 days to measure cytokine accumulation. RNA was isolated from peripheral blood and gene expression analysed using microarrays. Different infection groups were compared for the purpose of analysis: STH infection (combined chronic and light vs. uninfected groups) and chronic STH infection (chronic vs. combined light and uninfected groups). The chronic STH infection effect was associated with elevated production of GM-CSF (P = 0.007), IL-2 (P = 0.03), IL-5 (P = 0.01), and IL-10 (P = 0.01). Data reduction suggested that chronic infections were primarily associated with an immune phenotype characterized by elevated IL-5 and IL-10, typical of a modified Th2-like response. Chronic STH infections were associated with the up-regulation of genes associated with immune homeostasis (IDO, P = 0.03; CCL23, P = 0.008, HRK, P = 0.005), down-regulation of microRNA hsa-let-7d (P = 0.01) and differential regulation of several genes associated with granulocyte-mediated inflammation (IL-8, down-regulated, P = 0.0002; RNASE2, up-regulated, P = 0.009; RNASE3, up-regulated, p = 0.03).
Conclusions/Significance
Chronic STH infections were associated with a cytokine response indicative of a modified Th2 response. There was evidence that STH infections were associated with a pattern of gene expression suggestive of the induction of homeostatic mechanisms, the differential expression of several inflammatory genes and the down-regulation of microRNA has-let-7d. Effects on immune homeostasis and the development of a modified Th2 immune response during chronic STH infections could explain the systemic immunologic effects that have been associated with these infections such as impaired immune responses to vaccines and the suppression of inflammatory diseases
Medical Evidence of Human Rights Violations against Non-Arabic-Speaking Civilians in Darfur: A Cross-Sectional Study
Alexander Tsai and colleagues review medical records from the Amel Centre, Sudan, to assess consistency between recorded medical evidence and patient reports of human rights violations by the Government of Sudan and Janjaweed forces
Positive deviance control-case life history: a method to develop grounded hypotheses about successful long-term avoidance of infection
<p>Abstract</p> <p>Background</p> <p>Prevalence rates for long-term injection drug users in some localities surpass 60% for HIV and 80% for HCV. We describe methods for developing grounded hypotheses about how some injectors avoid infection with either virus.</p> <p>Methods</p> <p>Subjects: 25 drug injectors who have injected drugs 8 – 15 years in New York City. 17 remain without antibody to either HIV or HCV; 3 are double-positives; and 5 are positive for HCV but not HIV. "Staying Safe" methodology compares serostatus groups using detailed biographical timelines and narratives; and information about how subjects maintain access to physical resources and social support; their strategies and tactics to remain safe; how they handle problems of addiction and demands by drug dealers and other drug users; and how their behaviors and strategies do or do not become socially-embedded practices. Grounded theory and life-history analysis techniques compare and contrast doubly-uninfected with those infected with both viruses or only with HCV.</p> <p>Results</p> <p>Themes and initial hypotheses emerging from analyses included two master hypotheses that, if confirmed, should help shape preventive interventions: 1) Staying uninfected is not simply a question of social structure or social position. It involves agency by drug injectors, including sustained hard work and adaptation to changing circumstances. 2) Multiple intentionalities contribute to remaining uninfected. These conscious goals include balancing one's need for drugs and one's income; developing ways to avoid drug withdrawal sickness; avoiding situations where other drug users importune you to share drugs; and avoiding HIV (and perhaps HCV) infection. Thus, focusing on a single goal in prevention might be sub-optimal.</p> <p>Other hypotheses specify mechanisms of enacting these intentionalities. One example is finding ways to avoid extreme social ostracism.</p> <p>Conclusion</p> <p>We have identified strategies and tactics that some doubly-uninfected IDUs have developed to stay safe. Staying Safe methodology develops grounded hypotheses. These can be tested through cohort studies of incidence and prevention trials of hypothesis-based programs to help drug injectors make their injection and sexual careers safer for themselves and others. This positive deviance control-case life history method might be used to study avoiding other infections like genital herpes among sex workers.</p
Schistosoma haematobium Treatment in 1–5 Year Old Children: Safety and Efficacy of the Antihelminthic Drug Praziquantel
Urogenital schistosomiasis is an important, but neglected, infectious disease affecting over 100 million people, mainly in Africa. Children carry the heaviest burden of infection with children as young as 1 year old showing signs of infection. Children aged 5 years and below are currently excluded from schistosome control programmes for several reasons, including operational difficulties associated with accessing preschool children, misconceptions about their level of exposure to infective water and lack of safety data on the drug of choice for schistosome control, praziquantel, in children aged 5 years and below. This study was one of a small number of studies recently funded by the World Health Organization to investigate the need for praziquantel treatment in preschool children (aged 1–5 years) and to subsequently assess the safety and efficacy of the drug praziquantel in this age group. This study confirmed that preschool children carry significant levels of schistosome infection, exceeding those carried by their parents/guardians, highlighting the urgent need for their immediate inclusion in schistosome control programmes. The study also showed that praziquantel treatment is as safe and efficacious in children aged 1–5 years as it is in older children aged 6–10 years who are currently the target for mass drug administration
- …
