413 research outputs found

    Prevalence of Disorders Recorded in Dogs Attending Primary-Care Veterinary Practices in England

    Get PDF
    Purebred dog health is thought to be compromised by an increasing occurence of inherited diseases but inadequate prevalence data on common disorders have hampered efforts to prioritise health reforms. Analysis of primary veterinary practice clinical data has been proposed for reliable estimation of disorder prevalence in dogs. Electronic patient record (EPR) data were collected on 148,741 dogs attending 93 clinics across central and south-eastern England. Analysis in detail of a random sample of EPRs relating to 3,884 dogs from 89 clinics identified the most frequently recorded disorders as otitis externa (prevalence 10.2%, 95% CI: 9.1-11.3), periodontal disease (9.3%, 95% CI: 8.3-10.3) and anal sac impaction (7.1%, 95% CI: 6.1-8.1). Using syndromic classification, the most prevalent body location affected was the head-and-neck (32.8%, 95% CI: 30.7-34.9), the most prevalent organ system affected was the integument (36.3%, 95% CI: 33.9-38.6) and the most prevalent pathophysiologic process diagnosed was inflammation (32.1%, 95% CI: 29.8-34.3). Among the twenty most-frequently recorded disorders, purebred dogs had a significantly higher prevalence compared with crossbreds for three: otitis externa (P = 0.001), obesity (P = 0.006) and skin mass lesion (P = 0.033), and popular breeds differed significantly from each other in their prevalence for five: periodontal disease (P = 0.002), overgrown nails (P = 0.004), degenerative joint disease (P = 0.005), obesity (P = 0.001) and lipoma (P = 0.003). These results fill a crucial data gap in disorder prevalence information and assist with disorder prioritisation. The results suggest that, for maximal impact, breeding reforms should target commonly-diagnosed complex disorders that are amenable to genetic improvement and should place special focus on at-risk breeds. Future studies evaluating disorder severity and duration will augment the usefulness of the disorder prevalence information reported herein

    Enhanced biological carbon consumption in a high CO2 ocean

    Get PDF
    The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times1, causing a measurable reduction in seawater pH and carbonate saturation2. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period3. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms4, 5, 6. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 μatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today’s ocean7. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change

    Adaptive Evolution of Escherichia coli to an α-Peptide/β-Peptoid Peptidomimetic Induces Stable Resistance.

    Get PDF
    Antimicrobial peptides (AMPs) and synthetic analogues thereof target conserved structures of bacterial cell envelopes and hence, development of resistance has been considered an unlikely event. However, recently bacterial resistance to AMPs has been observed, and the aim of the present study was to determine whether bacterial resistance may also evolve against synthetic AMP analogues, e.g. α-peptide/β-peptoid peptidomimetics. E. coli ATCC 25922 was exposed to increasing concentrations of a peptidomimetic (10 lineages), polymyxin B (10 lineages), or MilliQ water (4 lineages) in a re-inoculation culturing setup covering approx. 500 generations. All 10 lineages exposed to the peptidomimetic adapted to 32 × MIC while this occurred for 8 out of 10 of the polymyxin B-exposed lineages. All lineages exposed to 32 × MIC of either the peptidomimetic or polymyxin B had a significantly increased MIC (16-32 ×) to the selection agent. Five transfers (≈ 35 generations) in unsupplemented media did not abolish resistance indicating that resistance was heritable. Single isolates from peptidomimetic-exposed lineage populations displayed MICs against the peptidomimetic from wild-type MIC to 32 × MIC revealing heterogeneous populations. Resistant isolates showed no cross-resistance against a panel of membrane-active AMPs. These isolates were highly susceptible to blood plasma antibacterial activity and were killed when plasma concentrations exceeded ≈ 30%. Notably, MIC of the peptidomimetic against resistant isolates returned to wild-type level upon addition of 25% plasma. Whole-genome sequencing of twenty isolates from four resistant lineages revealed mutations, in murein transglycosylase D (mltD) and outer-membrane proteins, which were conserved within and between lineages. However, no common resistance-conferring mutation was identified. We hypothesise that alterations in cell envelope structure result in peptidomimetic resistance, and that this may occur via several distinct mechanisms. Interestingly, this type of resistance result in a concomitant high susceptibility towards plasma, and therefore the present study does not infer additional concern for peptidomimetics as future therapeutics

    Genotyping and antibiotic resistance of thermophilic Campylobacter isolated from chicken and pig meat in Vietnam

    Get PDF
    Background Campylobacter species are recognized as the most common cause of foodborne bacterial gastroenteritis in humans. In this study nine Campylobacter strains isolated from chicken meat and pork in Hanoi, Vietnam, were characterized using molecular methods and tested for antibiotic resistance. Results The nine isolates (eight C. jejuni and one C. coli) were identified by multiplex PCR, and tested for the presence or absence of 29 gene loci associated with virulence, lipooligosaccharide (LOS) biosynthesis and further functions. flaA typing, multilocus sequence typing and microarray assay investigation showed a high degree of genetic diversity among these isolates. In all isolates motility genes (flaA, flaB, flhA, fliM), colonization associated genes (cadF, docB), toxin production genes (cdtA, cdtB, secD, secF), and the LOS biosynthesis gene pglB were detected. Eight gene loci (fliY, virB11, Cje1278, Cj1434c, Cj1138, Cj1438c, Cj1440c, Cj1136) could not be detected by PCR. A differing presence of the gene loci ciaB (22.2 %), Cje1280 (77.8 %), docC (66.7 %), and cgtB (55.6 %) was found. iamA, cdtC, and the type 6 secretion system were present in all C. jejuni isolates but not in C. coli. flaA typing resulted in five different genotypes within C. jejuni, MLST classified the isolates into seven sequence types (ST-5155, ST-6736, ST-2837, ST-4395, ST-5799, ST-4099 and ST-860). The microarray assay analysis showed a high genetic diversity within Vietnamese Campylobacter isolates which resulted in eight different types for C. jejuni. Antibiotic susceptibility profiles showed that all isolates were sensitive to gentamicin and most isolates (88.8 %) were sensitive to chloramphenicol, erythromycin and streptomycin. Resistance rates to nalidixic acid, tetracycline and ciprofloxacin were 88.9, 77.8 and 66.7 %, respectively. Conclusions To the best of our knowledge, this study is the first report that shows high genetic diversity and remarkable antibiotic resistance of Campylobacter strains isolated from meat in Vietnam which can be considered of high public health significance. These preliminary data show that large scale screenings are justified to assess the relevance of Campylobacter infections on human health in Vietnam

    Estrogen Receptor Beta rs1271572 Polymorphism and Invasive Ovarian Carcinoma Risk: Pooled Analysis within the Ovarian Cancer Association Consortium

    Get PDF
    The association of ovarian carcinoma risk with the polymorphism rs1271572 in the estrogen receptor beta (ESR2) gene was examined in 4946 women with primary invasive ovarian carcinoma and 6582 controls in a pooled analysis of ten case-control studies within the Ovarian Cancer Association Consortium (OCAC). All participants were non-Hispanic white women. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression adjusted for site and age. Women with the TT genotype were at increased risk of ovarian carcinoma compared to carriers of the G allele (OR = 1.10; 95%; CI: 1.01-1.21; p = 0.04); the OR was 1.09 (CI: 0.99-1.20; p = 0.07) after excluding data from the center (Hawaii) that nominated this SNP for OCAC genotyping A stronger association of rs1271572 TT versus GT/GG with risk was observed among women aged <= 50 years versus older women (OR = 1.35; CI: 1.12-1.62; p = 0.002; p for interaction = 0.02) that remained statistically significant after excluding Hawaii data (OR = 1.34; CI: 1.11-1.61; p = 0.009). No heterogeneity of the association was observed by study, menopausal status, gravidity, parity, use of contraceptive or menopausal hormones, tumor histological type, or stage at diagnosis. This pooled analysis suggests that rs1271572 might influence the risk of ovarian cancer, in particular among younger women

    Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. METHODS: We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). RESULTS: Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. CONCLUSION: We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. IMPACT: Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization

    Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer

    Get PDF
    BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid (p = 0.082) and clear cell (p = 0.083), with the most significant gene level association seen with TGFBR2 (p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 (p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA (p = 0.035, endometrioid and mucinous), LGALS1 (p = 0.03, mucinous), STAT5B (p = 0.022, clear cell), TGFBR1 (p = 0.021 endometrioid) and TGFBR2 (p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients

    No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival

    Get PDF
    BACKGROUND: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immune suppressive/pro-tumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be one prominent mechanism contributing to immunologic tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. METHODS: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association study (VEGAS) and the Admixture Likelihood method (AML), were used to test gene and pathway associations with survival. RESULTS: We did not identify individual SNPs that were significantly associated with survival after correction for multiple testing (p<3.5 x 10-5), nor did we identify significant associations between the MDSC pathway overall, or the 24 individual genes and EOC survival. CONCLUSIONS: In this well-powered analysis, we observed no evidence that inherited variations in MDSC-associated SNPs, individual genes, or the collective genetic pathway contributed to EOC survival outcomes. IMPACT: Common inherited variation in genes relevant to MDSCs were not associated with survival in women diagnosed with invasive EOC

    Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid

    Get PDF
    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome

    Objective shade matching, communication, and reproduction by combining dental photography and numeric shade quantification

    Get PDF
    Objective: The subject of this case report is the application of a newly developed workflow for objective shade communication sans visual shade assessment or the use of shade guides. Clinical Considerations: Clinical complications stemming from issues relating to esthetic integration can present a burden on the restorative team, often resulting in strenuous relationships among its members. The faithful imitation of the optical appearance of dental hard tissues with direct‐ and indirect restorations has been at the center of interest in a great number of publications from the realm of esthetic dentistry over the past 40 years. The present report describes a new approach to objective shade communication, by transcending the role of dental photography from its purely descriptive purpose to the level of quantification, thus abandoning the use of the established shading regimes and replacing them with a patient personal shade recipe based on the CIELAB color space instead. Conclusions: Objective shade communication is possible with the eLAB system by combining numeric shade quantification with dental photography. Clinical Significance: The eLAB system presents a viable alternative to the traditional approach to shade communication and shade matching in dentistry
    corecore