233 research outputs found

    Texture classification of proteins using support vector machines and bio-inspired metaheuristics

    Get PDF
    6th International Joint Conference, BIOSTEC 2013, Barcelona, Spain, February 11-14, 2013[Abstract] In this paper, a novel classification method of two-dimensional polyacrylamide gel electrophoresis images is presented. Such a method uses textural features obtained by means of a feature selection process for whose implementation we compare Genetic Algorithms and Particle Swarm Optimization. Then, the selected features, among which the most decisive and representative ones appear to be those related to the second order co-occurrence matrix, are used as inputs for a Support Vector Machine. The accuracy of the proposed method is around 94 %, a statistically better performance than the classification based on the entire feature set. This classification step can be very useful for discarding over-segmented areas after a protein segmentation or identification process

    Factors influencing participant enrolment in a diabetes prevention program in general practice: lessons from the Sydney diabetes prevention program

    Get PDF
    Background: The effectiveness of lifestyle interventions in reducing diabetes incidence has been well established. Little is known, however, about factors influencing the reach of diabetes prevention programs. This study examines the predictors of enrolment in the Sydney Diabetes Prevention Program (SDPP), a community-based diabetes prevention program conducted in general practice, New South Wales, Australia from 2008&ndash;2011.Methods: SDPP was an effectiveness trial. Participating general practitioners (GPs) from three Divisions of General Practice invited individuals aged 50&ndash;65 years without known diabetes to complete the Australian Type 2 Diabetes Risk Assessment tool. Individuals at high risk of diabetes were invited to participate in a lifestyle modification program. A multivariate model using generalized estimating equations to control for clustering of enrolment outcomes by GPs was used to examine independent predictors of enrolment in the program. Predictors included age, gender, indigenous status, region of birth, socio-economic status, family history of diabetes, history of high glucose, use of anti-hypertensive medication, smoking status, fruit and vegetable intake, physical activity level and waist measurement.Results: Of the 1821 eligible people identified as high risk, one third chose not to enrol in the lifestyle program. In multivariant analysis, physically inactive individuals (OR: 1.48, P = 0.004) and those with a family history of diabetes (OR: 1.67, P = 0.000) and history of high blood glucose levels (OR: 1.48, P = 0.001) were significantly more likely to enrol in the program. However, high risk individuals who smoked (OR: 0.52, P = 0.000), were born in a country with high diabetes risk (OR: 0.52, P = 0.000), were taking blood pressure lowering medications (OR: 0.80, P = 0.040) and consumed little fruit and vegetables (OR: 0.76, P = 0.047) were significantly less likely to take up the program.Conclusions: Targeted strategies are likely to be needed to engage groups such as smokers and high risk ethnic groups. Further research is required to better understand factors influencing enrolment in diabetes prevention programs in the primary health care setting, both at the GP and individual level.<br /

    Simple mindreading abilities predict complex theory of mind: developmental delay in autism spectrum disorders

    Get PDF
    Theory of Mind (ToM) is impaired in individuals with Autism Spectrum Disorders (ASD). The aims of this study were to: i) examine the developmental trajectories of ToM abilities in two different mentalizing tasks in children with ASD compared to TD children; and ii) to assess if a ToM simple test known as Eyes-test could predict performance on the more advanced ToM task, i.e. Comic Strip test. Based on a sample of 37 children with ASD and 55 TD children, our results revealed slower development at varying rates in all ToM measures in children with ASD, with delayed onset compared to TD children. These results could stimulate new treatments for social abilities, which would lessen the social deficit in ASD

    Induction of Cytoprotective Pathways Is Central to the Extension of Lifespan Conferred by Multiple Longevity Pathways

    Get PDF
    Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.National Institute on Aging (AG16636

    Polygenic resilience scores capture protective genetic effects for Alzheimer’s disease

    Full text link
    Polygenic risk scores (PRSs) can boost risk prediction in late-onset Alzheimer’s disease (LOAD) beyond apolipoprotein E (APOE) but have not been leveraged to identify genetic resilience factors. Here, we sought to identify resilience-conferring common genetic variants in (1) unaffected individuals having high PRSs for LOAD, and (2) unaffected APOE-ε4 carriers also having high PRSs for LOAD. We used genome-wide association study (GWAS) to contrast “resilient” unaffected individuals at the highest genetic risk for LOAD with LOAD cases at comparable risk. From GWAS results, we constructed polygenic resilience scores to aggregate the addictive contributions of risk-orthogonal common variants that promote resilience to LOAD. Replication of resilience scores was undertaken in eight independent studies. We successfully replicated two polygenic resilience scores that reduce genetic risk penetrance for LOAD. We also showed that polygenic resilience scores positively correlate with polygenic risk scores in unaffected individuals, perhaps aiding in staving off disease. Our findings align with the hypothesis that a combination of risk-independent common variants mediates resilience to LOAD by moderating genetic disease risk

    A Decline in p38 MAPK Signaling Underlies Immunosenescence in Caenorhabditis elegans

    Get PDF
    The decline in immune function with aging, known as immunosenescence, has been implicated in evolutionarily diverse species, but the underlying molecular mechanisms are not understood. During aging in Caenorhabditis elegans, intestinal tissue deterioration and the increased intestinal proliferation of bacteria are observed, but how innate immunity changes during C. elegans aging has not been defined. Here we show that C. elegans exhibits increased susceptibility to bacterial infection with age, and we establish that aging is associated with a decline in the activity of the conserved PMK-1 p38 mitogen-activated protein kinase pathway, which regulates innate immunity in C. elegans. Our data define the phenomenon of innate immunosenescence in C. elegans in terms of the age-dependent dynamics of the PMK-1 innate immune signaling pathway, and they suggest that a cycle of intestinal tissue aging, immunosenescence, and bacterial proliferation leads to death in aging C. elegans

    C. elegans SWAN-1 Binds to EGL-9 and Regulates HIF-1-Mediated Resistance to the Bacterial Pathogen Pseudomonas aeruginosa PAO1

    Get PDF
    Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing

    An integrated systems biology approach to the study of preterm birth using "-omic" technology - a guideline for research

    Get PDF
    Preterm birth is the leading cause of neonatal mortality and perinatal morbidity. The etiology of preterm is multi-factorial and still unclear. As evidence increases for a genetic contribution to PTB, so does the need to explore genomics, transcriptomics, proteomics and metabolomics in its study. This review suggests research guidelines for the conduct of high throughput systems biology investigations into preterm birth with the expectation that this will facilitate the sharing of samples and data internationally through consortia, generating the power needed to study preterm birth using integrated "-omics" technologies. The issues to be addressed include: (1) integrated "-omics" approaches, (2) phenotyping, (3) sample collection, (4) data management-integrative databases, (5) international consortia and (6) translational feasibility. This manuscript is the product of discussions initiated by the "-Omics" Working Group at the Preterm Birth International Collaborative Meeting held at the World Health Organization, Geneva, Switzerland in April 2009
    corecore