2,992 research outputs found
Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy
Corticosteroid (CS) therapy is used widely in the treatment of a range of pathologies, but can delay production of myelin, the insulating sheath around central nervous system nerve fibers. The cellular targets of CS action are not fully understood, that is, "direct" action on cells involved in myelin genesis [oligodendrocytes and their progenitors the oligodendrocyte precursor cells (OPCs)] versus "indirect" action on other neural cells. We evaluated the effects of the widely used CS dexamethasone (DEX) on purified OPCs and oligodendrocytes, employing complementary histological and transcriptional analyses. Histological assessments showed no DEX effects on OPC proliferation or oligodendrocyte genesis/maturation (key processes underpinning myelin genesis). Immunostaining and RT-PCR analyses show that both cell types express glucocorticoid receptor (GR; the target for DEX action), ruling out receptor expression as a causal factor in the lack of DEX-responsiveness. GRs function as ligand-activated transcription factors, so we simultaneously analyzed DEX-induced transcriptional responses using microarray analyses; these substantiated the histological findings, with limited gene expression changes in DEX-treated OPCs and oligodendrocytes. With identical treatment, microglial cells showed profound and global changes post-DEX addition; an unexpected finding was the identification of the transcription factor Olig1, a master regulator of myelination, as a DEX responsive gene in microglia. Our data indicate that CS-induced myelination delays are unlikely to be due to direct drug action on OPCs or oligodendrocytes, and may occur secondary to alterations in other neural cells, such as the immune component. To the best of our knowledge, this is the first comparative molecular and cellular analysis of CS effects in glial cells, to investigate the targets of this major class of anti-inflammatory drugs as a basis for myelination deficits
Generating natural language specifications from UML class diagrams
Early phases of software development are known to be problematic, difficult to manage and errors occurring during these phases are expensive to correct. Many systems have been developed to aid the transition from informal Natural Language requirements to semistructured or formal specifications. Furthermore, consistency checking is seen by many software engineers as the solution to reduce the number of errors occurring during the software development life cycle and allow early verification and validation of software systems. However, this is confined to the models developed during analysis and design and fails to include the early Natural Language requirements. This excludes proper user involvement and creates a gap between the original requirements and the updated and modified models and implementations of the system. To improve this process, we propose a system that generates Natural Language specifications from UML class diagrams. We first investigate the variation of the input language used in naming the components of a class diagram based on the study of a large number of examples from the literature and then develop rules for removing ambiguities in the subset of Natural Language used within UML. We use WordNet,a linguistic ontology, to disambiguate the lexical structures of the UML string names and generate semantically sound sentences. Our system is developed in Java and is tested on an independent though academic case study
Injury Risk Estimation Expertise Assessing the ACL Injury Risk Estimation Quiz
Background: Available methods for screening anterior cruciate ligament (ACL) injury risk are effective but limited in application as
they generally rely on expensive and time-consuming biomechanical movement analysis. A potential efficient alternative to biomechanical
screening is skilled movement analysis via visual inspection (ie, having experts estimate injury risk factors based on
observations of athletes’ movements).
Purpose: To develop a brief, valid psychometric assessment of ACL injury risk factor estimation skill: the ACL Injury Risk Estimation
Quiz (ACL-IQ).
Study Design: Cohort study (diagnosis); Level of evidence, 3.
Methods: A total of 660 individuals participated in various stages of the study, including athletes, physicians, physical therapists,
athletic trainers, exercise science researchers/students, and members of the general public in the United States. The ACL-IQ was
fully computerized and made available online (www.ACL-IQ.org). Item sampling/reduction, reliability analysis, cross-validation,
and convergent/discriminant validity analysis were conducted to optimize the efficiency and validity of the assessment.
Results: Psychometric optimization techniques identified a short (mean time, 2 min 24 s), robust, 5-item assessment with high
reliability (test-retest: r = 0.90) and consistent discriminability (average difference of exercise science professionals vs general
population: Cohen d = 1.98). Exercise science professionals and general population individuals scored 74% and 53% correct,
respectively. Convergent and discriminant validity was demonstrated. Scores on the ACL-IQ were most associated with ACL
knowledge and various cue utilities and were least associated with domain-general spatial/decision-making ability, personality,
or other demographic variables. Overall, 23% of the total sample (40% exercise science professionals; 6% general population)
performed better than or equal to the ACL nomogram.
Conclusion: This study presents the results of a systematic approach to assess individual differences in ACL injury risk factor
estimation skill; the assessment approach is efficient (ie, it can be completed in\3 min) and psychometrically robust. The results
provide evidence that some individuals have the ability to visually estimate ACL injury risk factors more accurately than other
instrument-based ACL risk estimation methods (ie, ACL nomogram). The ACL-IQ provides the foundation for assessing the efficacy
of observational ACL injury risk factor assessment (ie, does simple skilled visual inspection reduce ACL injuries?). It also
provides a representative task environment that can be used to increase our understanding of the perceptual-cognitive mechanisms
underlying observational movement analysis and to improve injury risk assessment performance
Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect
We present a stochastic theory for the nonequilibrium dynamics of charges
moving in a quantum scalar field based on the worldline influence functional
and the close-time-path (CTP or in-in) coarse-grained effective action method.
We summarize (1) the steps leading to a derivation of a modified
Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical
theory free of runaway solutions and without pre-acceleration patholigies, and
(2) the transformation to a stochastic effective action which generates
Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a
particle's worldline around its semiclassical trajectory. We point out the
misconceptions in trying to directly relate radiation reaction to vacuum
fluctuations, and discuss how, in the framework that we have developed, an
array of phenomena, from classical radiation and radiation reaction to the
Unruh effect, are interrelated to each other as manifestations at the
classical, stochastic and quantum levels. Using this method we give a
derivation of the Unruh effect for the spacetime worldline coordinates of an
accelerating charge. Our stochastic particle-field model, which was inspired by
earlier work in cosmological backreaction, can be used as an analog to the
black hole backreaction problem describing the stochastic dynamics of a black
hole event horizon.Comment: Invited talk given by BLH at the International Assembly on
Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1
figur
Early and Middle Holocene Hunter-Gatherer Occupations in Western Amazonia: The Hidden Shell Middens
We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region's past and offers a new context within which the late Holocene "Earthmovers" of the Llanos de Moxos could have emerged. © 2013 Lombardo et al
Walk well:a randomised controlled trial of a walking intervention for adults with intellectual disabilities: study protocol
Background - Walking interventions have been shown to have a positive impact on physical activity (PA) levels, health and wellbeing for adult and older adult populations. There has been very little work carried out to explore the effectiveness of walking interventions for adults with intellectual disabilities. This paper will provide details of the Walk Well intervention, designed for adults with intellectual disabilities, and a randomised controlled trial (RCT) to test its effectiveness. Methods/design - This study will adopt a RCT design, with participants allocated to the walking intervention group or a waiting list control group. The intervention consists of three PA consultations (baseline, six weeks and 12 weeks) and an individualised 12 week walking programme. A range of measures will be completed by participants at baseline, post intervention (three months from baseline) and at follow up (three months post intervention and six months from baseline). All outcome measures will be collected by a researcher who will be blinded to the study groups. The primary outcome will be steps walked per day, measured using accelerometers. Secondary outcome measures will include time spent in PA per day (across various intensity levels), time spent in sedentary behaviour per day, quality of life, self-efficacy and anthropometric measures to monitor weight change. Discussion - Since there are currently no published RCTs of walking interventions for adults with intellectual disabilities, this RCT will examine if a walking intervention can successfully increase PA, health and wellbeing of adults with intellectual disabilities
Optimization and transformation of Arundo donax L. using particle bombardment
An optimized particle bombardment protocol to introduce DNA into Arundo donax L. (giant reed) embryogenic callus cells was developed. The physical and biological parameters tested for optimal transient expression of ß-glucuronidase (GUS) and green fluorescent protein (GFP) genes were: helium pressure, distance from stopping screen to target tissue and vacuum pressure together with other factors such as gold microparticle size, DNA concentration and the number of bombardments. The highest transient GUS and GFP expression was obtained when cells were bombarded twice at 1100 psi, with 9 cm target distance, 24 mm Hg vacuum pressure, 1 mm gold particle size, 1.5 mg DNA per bombardment, three days pre-culture prior to bombardment and six days post bombardment culture. This is the first report of optimization of particle bombardment parameters for high-efficiency DNA delivery combined with minimum damage to target giant reed tissues.Key words: Arundo donax, particle bombardment, ß-glucuronidase (GUS), green fluorescent protein (GFP), transient gene expression, genetic transformation
Photo-antagonism of the GABAA receptor
Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Self-reflection and academic performance: is there a relationship?
The purposes of the present study were two-fold: first, to evaluate whether reflection journal writing was effective in promoting self-reflection and learning, and whether students become better at self-reflection if they engage continuously in reflection journal writing. To that end, the reflection journals of 690 first-year applied science students at a local polytechnic were studied by means of an automated coding procedures using software. Data was collected twice, once at the beginning and again towards the end of an academic year. Outcomes of the textual content analyses revealed that students reflected on both the process and contents of their learning: critical review of past learning experiences, learning strategies and summaries of what was learned. Correlational analyses showed weak to moderate inter-relationship
- …
