530 research outputs found
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Nucleotide-Oligomerization-Domain-2 Affects Commensal Gut Microbiota Composition and Intracerebral Immunopathology in Acute Toxoplasma gondii Induced Murine Ileitis
Background Within one week following peroral high dose infection with
Toxoplasma (T.) gondii, susceptible mice develop non-selflimiting acute
ileitis due to an underlying Th1-type immunopathology. The role of the innate
immune receptor nucleotide-oligomerization-domain-2 (NOD2) in mediating
potential extra-intestinal inflammatory sequelae including the brain, however,
has not been investigated so far. Methodology/Principal Findings Following
peroral infection with 100 cysts of T. gondii strain ME49, NOD2-/- mice
displayed more severe ileitis and higher small intestinal parasitic loads as
compared to wildtype (WT) mice. However, systemic (i.e. splenic) levels of
pro-inflammatory cytokines such as TNF-α and IFN-γ were lower in NOD2-/- mice
versus WT controls at day 7 p.i. Given that the immunopathological outcome
might be influenced by the intestinal microbiota composition, which is shaped
by NOD2, we performed a quantitative survey of main intestinal bacterial
groups by 16S rRNA analysis. Interestingly, Bifidobacteria were virtually
absent in NOD2-/- but not WT mice, whereas differences in remaining bacterial
species were rather subtle. Interestingly, more distinct intestinal
inflammation was accompanied by higher bacterial translocation rates to extra-
intestinal tissue sites such as liver, spleen, and kidneys in T. gondii
infected NOD2-/- mice. Strikingly, intracerebral inflammatory foci could be
observed as early as seven days following T. gondii infection irrespective of
the genotype of animals, whereas NOD2-/- mice exhibited higher intracerebral
parasitic loads, higher F4/80 positive macrophage and microglia numbers as
well as higher IFN-γ mRNA expression levels as compared to WT control animals.
Conclusion/Significance NOD2 signaling is involved in protection of mice from
T. gondii induced acute ileitis. The parasite-induced Th1-type immunopathology
at intestinal as well as extra-intestinal sites including the brain is
modulated in a NOD2-dependent manner
Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth
Knowledge dynamics in the tourism-social entrepreneurship nexus
Tourism is often employed as a vehicle for facilitating social-economic development, however its usefulness has been somewhat limited in relation to addressing social issues, and in particular, those issues relating to poverty. This is partly due to the lack of cross-sectoral interactions and knowledge exchange between private, public and third sectors that are needed to create effective and appropriate initiatives to leverage tourism for social benefits. Such traditional sectoral boundaries can be broken down through social entrepreneurship approaches which concomitantly, facilitate the creation and synergizing of social innovation that addresses persistent social issues. Yet to date, the utility of cross-sectoral knowledge dynamics still remains largely under-researched in both the social entrepreneurship and tourism literature. This chapter introduces readers to the concept of knowledge dynamics and discusses knowledge dynamics in the tourism and social entrepreneurship nexus via a case study of community-based tourism in Mai Hich, Vietnam. We argue that by gaining an enhanced understanding of cross-sectoral knowledge dynamics, we can strengthen the overall praxis of tourism and social entrepreneurship, and in particular, assist policymakers in fostering conditions that generate increased innovation.Griffith Business School, Department of Tourism, Sport and Hotel ManagementNo Full Tex
Computational modelling of meiotic entry and commitment
In response to developmental and environmental conditions, cells exit the mitotic cell cycle and enter the meiosis program to generate haploid gametes from diploid germ cells. Once cells decide to enter the meiosis program they become irreversibly committed to the completion of meiosis irrespective of the presence of cue signals. How meiotic entry and commitment occur due to the dynamics of the regulatory network is not well understood. Therefore, we constructed a mathematical model of the regulatory network that controls the transition from mitosis to meiosis in Schizosaccharomyces pombe. Upon nitrogen starvation, yeast cells exit mitosis and undergo conjugation and meiotic entry. The model includes the regulation of Mei2, an RNA binding protein required for conjugation and meiotic entry, by multiple feedback loops involving Pat1, a kinase that keeps cells in mitosis, and Ste11, a transcription activator required for the sexual differentiation. The model accounts for various experimental observations and demonstrates that the activation of Mei2 is bistable, which ensures the irreversible commitment to meiosis. Further, we show by integrating the meiosis-specific regulation with a cell cycle model, the dynamics of cell cycle exit, G1 arrest and entry into meiosis under nitrogen starvation. © 2017 The Author(s)
Recommended from our members
Observing interactions between children and adolescents and their parents: the effects of anxiety disorder and age
Parental behaviors, most notably overcontrol, lack
of warmth and expressed anxiety, have been implicated in
models of the development and maintenance of anxiety disorders in children and young people. Theories of normative development have proposed that different parental responses are required to support emotional development in childhood and adolescence, yet age has not typically been taken into account in studies of parenting and anxiety disorders. In order to identify whether associations between anxiety disorder status and parenting differ in children and adolescents, we compared
observed behaviors of parents of children (7–10 years)
and adolescents (13–16 years) with and without anxiety disorders (n=120), while they undertook a series of mildly anxiety-provoking tasks. Parents of adolescents showed significantly lower levels of expressed anxiety, intrusiveness and warm engagement than parents of children. Furthermore, offspring age moderated the association between anxiety disorder status and parenting behaviors. Specifically, parents of adolescents with anxiety disorders showed higher intrusiveness and lower warm engagement than parents of non-anxious adolescents. A similar relationship between these parenting behaviors and anxiety disorder status was not observed among
parents of children. The findings suggest that theoretical accounts of the role of parental behaviors in anxiety disorders in children and adolescents should distinguish between these different developmental periods. Further experimental research to establish causality, however, would be required before committing additional resources to targeting parenting factors within treatment
Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass <i>Zostera muelleri</i>
© 2017, Springer Science+Business Media B.V. Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production
Smoking among pregnant women in Cantabria (Spain): trend and determinants of smoking cessation
Background
Cantabria (Spain) has one of the highest prevalence of smoking among women of the European Union. The objectives are to assess the trend of smoking during pregnancy in a five-year period and the determinants of smoking cessation during pregnancy in Cantabria.
Methods
A 1/6 random sample of all women delivering at the reference hospital of the region for the period 1998–2002 was drawn, 1559 women. Information was obtained from personal interview, clinical chart, and prenatal care records. In the analysis relative risks and 95% confidence intervals were estimated. Multivariable analysis was carried out using stepwise logistic regression.
Results
Smoking prior to pregnancy decreased from 53.6% in 1998 to 39.4% in 2002. A decrease in smoking cessation among women smoking at the beginning of pregnancy was observed, from 37.3% in 1998 to 20.6% in 2002. The mean number of cigarettes/day (cig/d) before pregnancy remained constant, around 16 cig/d, whereas a slight trend to increase over time was seen, from 7.7 to 8.9 cig/d. In univariate analysis two variables favoured significantly smoking cessation, although they were not included in the stepwise logistic regression analysis, a higher education level and to be married. The logistic regression model included five significant predictors (also significant in univariate analysis): intensity of smoking, number of previous pregnancies, partner's smoking status, calendar year of study period (these four variables favoured smoking continuation), and adequate prenatal care (which increased smoking cessation).
Conclusion
The frequency of smoking among pregnant women is very high in Cantabria. As smoking cessation rate has decreased over time, a change in prenatal care programme on smoking counseling is needed. Several determinants of smoking cessation, such as smoking before pregnancy and partner's smoking, should be also addressed by community programmes
3D laser nano-printing on fibre paves the way for super-focusing of multimode laser radiation
Multimode high-power laser diodes suffer from inefficient beam focusing, leading to a focal spot 10–100 times greater than the diffraction limit. This inevitably restricts their wider use in ‘direct-diode’ applications in materials processing and biomedical photonics. We report here a ‘super-focusing’ characteristic for laser diodes, where the exploitation of self-interference of modes enables a significant reduction of the focal spot size. This is achieved by employing a conical microlens fabricated on the tip of a multimode optical fibre using 3D laser nano-printing (also known as multi-photon lithography). When refracted by the conical surface, the modes of the fibre-coupled laser beam self-interfere and form an elongated narrow focus, usually referred to as a ‘needle’ beam. The multiphoton lithography technique allows the realisation of almost any optical element on a fibre tip, thus providing the most suitable interface for free-space applications of multimode fibre-delivered laser beams. In addition, we demonstrate the optical trapping of microscopic objects with a super-focused multimode laser diode beam thus rising new opportunities within the applications sector where lab-on-chip configurations can be exploited. Most importantly, the demonstrated super-focusing approach opens up new avenues for the ‘direct-diode’ applications in material processing and 3D printing, where both high power and tight focusing is required
- …
