94 research outputs found
Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways
Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also
between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles,
while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi
apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics
of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main
routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder
content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups
contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some
of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more
disordered (,23%) than the other two, COPI (,9%) and COPII (,8%). We show that this structural phenomenon enhances
the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other
two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its
prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest
capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific
functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for
protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of
structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of
evolutionary adaptability in the three routes
How Sensory Experiences Affect Adolescents with an Autistic Spectrum Condition within the Classroom
Sensory processing difficulties are consistently reported amongst individuals with an autistic spectrum condition (ASC); these have a significant impact on daily functioning. Evidence in this area comes from observer reports and first-hand accounts; both have limitations. The current study used the Adolescent/Adult Sensory Profile (AASP; Brown and Dunn in The Adolescent/Adult Sensory Profile: self questionnaire. Pearson, 2002a), and a qualitative questionnaire to investigate sensory issues in school children with ASC. The AASP found that the participants’ mean scores were outside normal parameters. Participants reported difficulties in at least one sensory domain, with hearing affecting them the most. Content analysis revealed sensory sensitivity to affect the participant’s learning and that sensory experiences were largely negative. Results suggest that schools need to create sensory profiles for each individual with ASC
Immune reconstitution and clinical recovery following anti-CD28 antibody (TGN1412)-induced cytokine storm
Cytokine storm can result from cancer immunotherapy or certain infections, including COVID-19. Though short-term immune-related adverse events are routinely described, longer-term immune consequences and sequential immune monitoring are not as well defined. In 2006, six healthy volunteers received TGN1412, a CD28 superagonist antibody, in a first-in-man clinical trial and suffered from cytokine storm. After the initial cytokine release, antibody effect-specific immune monitoring started on Day + 10 and consisted mainly of evaluation of dendritic cell and T-cell subsets and 15 serum cytokines at 21 time-points over 2 years. All patients developed problems with concentration and memory; three patients were diagnosed with mild-to-moderate depression. Mild neutropenia and autoantibody production was observed intermittently. One patient suffered from peripheral dry gangrene, required amputations, and had persistent Raynaud's phenomenon. Gastrointestinal irritability was noted in three patients and coincided with elevated γδT-cells. One had pruritus associated with elevated IgE levels, also found in three other asymptomatic patients. Dendritic cells, initially undetectable, rose to normal within a month. Naïve CD8+ T-cells were maintained at high levels, whereas naïve CD4+ and memory CD4+ and CD8+ T-cells started high but declined over 2 years. T-regulatory cells cycled circannually and were normal in number. Cytokine dysregulation was especially noted in one patient with systemic symptoms. Over a 2-year follow-up, cognitive deficits were observed in all patients following TGN1412 infusion. Some also had signs or symptoms of psychological, mucosal or immune dysregulation. These observations may discern immunopathology, treatment targets, and long-term monitoring strategies for other patients undergoing immunotherapy or with cytokine storm
Mechanisms of T cell organotropism
F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation
CD4+ T Cell Effects on CD8+ T Cell Location Defined Using Bioluminescence
T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are “helped” by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell “help” is to program the homing potential of CD8+ T cells
Ecosystem development after mangrove wetland creation : plant–soil change across a 20-year chronosequence
This paper is not subject to U.S. copyright. The definitive version was published in Ecosystems 15 (2012): 848-866, doi:10.1007/s10021-012-9551-1.Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10–30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0–10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses
Relationships Between Salinity and Short-Term Soil Carbon Accumulation Rates from Marsh Types Across a Landscape in the Mississippi River Delta
The feeling of me feeling for you: Interoception, alexithymia and empathy in autism.
Following recent evidence for a link between interoception, emotion and empathy, we investigated relationships between these factors in Autism Spectrum Disorder (ASD). 26 adults with ASD and 26 healthy participants completed tasks measuring interoception, alexithymia and empathy. ASD participants with alexithymia demonstrated lower cognitive and affective empathy than ASD participants without alexithymia. ASD participants showed reduced interoceptive sensitivity (IS), and also reduced interoceptive awareness (IA). IA was correlated with empathy and alexithymia, but IS was related to neither. Alexithymia fulfilled a mediating role between IA and empathy. Our findings are suggestive of an alexithymic subgroup in ASD, with distinct interoceptive processing abilities, and have implications for diagnosis and interventions
Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis
Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn's disease.
BACKGROUND: Altered intestinal dendritic cell (DC) function underlies dysregulated T-cell responses to bacteria in Crohn's disease (CD) but it is unclear whether composition of the intestinal microbiota impacts local DC function. We assessed the relationship between DC function with disease activity and intestinal microbiota in patients with CD. METHODS: Surface expression of Toll-like receptor (TLR)-2, TLR-4, and spontaneous intracellular interleukin (IL)-10, IL-12p40, IL-6 production by freshly isolated DC were analyzed by multicolor flow cytometry of cells extracted from rectal tissue of 10 controls and 28 CD patients. Myeloid DC were identified as CD11c(+) HLA-DR(+lin-/dim) cells (lin = anti-CD3, CD14, CD16, CD19, CD34). Intestinal microbiota were analyzed by fluorescent in situ hybridization of fecal samples with oligonucleotide probes targeting 16S rRNA of bifidobacteria, bacteroides-prevotella, C. coccoides-E. rectale, and Faecalibacterium prausnitzii. RESULTS: DC from CD produced higher amounts of IL-12p40 and IL-6 than control DC. IL-6(+) DC were associated with the CD Activity Index (r = 0.425; P = 0.024) and serum C-reactive protein (CRP) (r = 0.643; P = 0.004). DC expression of TLR-4 correlated with disease activity. IL-12p40(+) DC correlated with ratio of bacteroides: bifidobacteria (r = 0.535, P = 0.003). IL-10(+) DC correlated with bifidobacteria, and IL-6(+) DC correlated negatively with F. prausnitzii (r = -0.50; P = 0.008). The amount of TLR-4 on DC correlated negatively with the concentration of F. prausnitzii. CONCLUSIONS: IL-6 production by intestinal DC is increased in CD and correlates with disease activity and CRP. Bacterially driven local IL-6 production by intestinal DC may overcome regulatory activity, resulting in unopposed effector function and tissue damage. Intestinal DC function may be influenced by the composition of the commensal microbiota
- …
