6 research outputs found
Hypersensitive K303R oestrogen receptor-α variant not found in invasive carcinomas
INTRODUCTION: Genetic abnormalities or mutations in premalignant breast lesions may have a role in progression toward malignancy or influence the behaviour of subsequent disease. The A908G (Lys303→Arg) change in the gene encoding oestrogen receptor-α (ER-α) creates a hypersensitivity to oestradiol and would have significant consequences if present in breast carcinoma, especially those treated with endocrine therapy. We have therefore examined a panel of endocrine-treated invasive carcinomas for the presence of this mutation. METHODS: Sequencing of control DNA was shown to detect mutation present in as little as 15% of the starting material. Enrichment for the mutation by using MboII restriction digestion allowed the detection of mutant present at 1% or less. We applied these techniques to genomic DNA and cDNA from 136 invasive breast carcinomas. RESULTS: No evidence of the A908G mutation was found with either technique. The incidence of this mutation in our panel of tumours is therefore significantly less than previously reported. CONCLUSION: The fact that the mutation was not found leads us to believe that this mutation is absent from most cells in invasive carcinomas and furthermore that the major expression product of the ER-α gene in cancers does not contain the K303R mutation. It is therefore unlikely to influence the effectiveness of endocrine treatment
The estrogen receptor-α A908G (K303R) mutation occurs at a low frequency in invasive breast tumors: results from a population-based study
INTRODUCTION: Evidence suggests that alterations in estrogen signaling pathways, including estrogen receptor-α (ER-α), occur during breast cancer development. A point mutation in ER-α (nucleotide A908G), producing an amino acid change from lysine to arginine at codon 303 (K303R) results in receptor hypersensitivity to estrogen. This mutation was initially reported in one-third of hyperplastic benign breast lesions, although several recent studies failed to detect it in benign or malignant breast tissues. METHODS: We screened 653 microdissected, newly diagnosed invasive breast tumors from patients in the Carolina Breast Cancer Study, a population-based case-control study of breast cancer in African American and white women in North Carolina, for the presence of the ER-α A908G mutation by using single-strand conformational polymorphism (SSCP) analysis and (33)P-cycle sequencing. RESULTS: We detected the ER-α A908G mutation in 37 of 653 (5.7%) breast tumors. The absence of this mutation in germline DNA confirmed it to be somatic. Three tumors exhibited only the mutant G base at nucleotide 908 on sequencing, indicating that the wild-type ER-α allele had been lost. The ER-α A908G mutation was found more frequently in higher-grade breast tumors (odds ratio (OR) 2.83; 95% confidence interval (CI) 1.09 to 7.34, grade II compared with grade I), and in mixed lobular/ductal tumors (OR 2.10; 95% CI 0.86 to 5.12) compared with ductal carcinomas, although the latter finding was not statistically significant. CONCLUSION: This population-based study, the largest so far to screen for the ER-α A908G mutation in breast cancer, confirms the presence of the mutant in invasive breast tumors. The mutation was associated with higher tumor grade and mixed lobular/ductal breast tumor histology
