588 research outputs found

    Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy.

    Get PDF
    BackgroundHistone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac diseases. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle (SV) heart disease of right ventricular morphology, as well as in a rodent model of right ventricular hypertrophy (RVH).MethodsHomogenates of right ventricle (RV) explants from non-failing controls and children born with a SV were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day-old rat pups were placed in hypoxic conditions, and echocardiographic analysis, gene expression, HDAC catalytic activity, and isoform expression studies of the RV were performed.ResultsClass I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in the hearts of children born with a SV. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression, elevated class I and class IIb HDAC catalytic activity, and protein expression in the RV compared with those in the control.ConclusionsThese data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. Although further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for preclinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies

    Paisia, an Early Cretaceous eudicot angiosperm flower with pantoporate pollen from Portugal

    Get PDF
    A new fossil angiosperm, Paisia pantoporata, is described from the Early Cretaceous Catefica mesofossil flora, Portugal, based on coalified floral buds, flowers and isolated floral structures. The flowers are actinomorphic and structurally bisexual with a single whorl of five fleshy tepals, a single whorl of five stamens and a single whorl of five carpels. Tepals, stamens and carpels are opposite, arranged on the same radii and tepals are involute at the base clasping the stamens. Stamens have a massive filament that grades without a joint into the anther. The anthers are dithecate and tetrasporangiate with extensive connective tissue between the tiny pollen sacs. Pollen grains are pantoporate and spiny. The carpels are free, apparently plicate, with many ovules borne in two rows along the ventral margins. Paisia pantoporata is the oldest known flower with pantoporate pollen. Similar pantoporate pollen was also recognised in the associated dispersed palynoflora. Paisia is interpreted as a possibly insect pollinated, herbaceous plant with low pollen production and low dispersal potential of the pollen. The systematic position of Paisia is uncertain and Paisia pantoporata most likely belongs to an extinct lineage. Pantoporate pollen occurs scattered among all major groups of angiosperms and a close match to the fossils has not been identified. The pentamerous floral organisation together with structure of stamen, pollen and carpel suggests a phylogenetic position close to the early diverging eudicot lineages, probably in the Ranunculales.Swiss Light Source at the Paul Scherrer Institute (European Union FP6 projects) [20130185, 20141047]; Swedish Research Council [2014-5228]; Portuguese Science Foundation (FCT) [UID/MAR/00350/2013]; CretaCarbo project [PTDC/CTE-GIX/113983/2009

    Low-Volume High-Intensity Interval Training in a Gym Setting Improves Cardio-Metabolic and Psychological Health.

    Get PDF
    BACKGROUND: Within a controlled laboratory environment, high-intensity interval training (HIT) elicits similar cardiovascular and metabolic benefits as traditional moderate-intensity continuous training (MICT). It is currently unclear how HIT can be applied effectively in a real-world environment. PURPOSE: To investigate the hypothesis that 10 weeks of HIT, performed in an instructor-led, group-based gym setting, elicits improvements in aerobic capacity (VO2max), cardio-metabolic risk and psychological health which are comparable to MICT. METHODS: Ninety physically inactive volunteers (42±11 y, 27.7±4.8 kg.m-2) were randomly assigned to HIT or MICT group exercise classes. HIT consisted of repeated sprints (15-60 seconds, >90% HRmax) interspersed with periods of recovery cycling (≤25 min.session-1, 3 sessions.week-1). MICT participants performed continuous cycling (~70% HRmax, 30-45 min.session-1, 5 sessions.week-1). VO2max, markers of cardio-metabolic risk, and psychological health were assessed pre and post-intervention. RESULTS: Mean weekly training time was 55±10 (HIT) and 128±44 min (MICT) (p<0.05), with greater adherence to HIT (83±14% vs. 61±15% prescribed sessions attended, respectively; p<0.05). HIT improved VO2max, insulin sensitivity, reduced abdominal fat mass, and induced favourable changes in blood lipids (p<0.05). HIT also induced beneficial effects on health perceptions, positive and negative affect, and subjective vitality (p<0.05). No difference between HIT and MICT was seen for any of these variables. CONCLUSIONS: HIT performed in a real-world gym setting improves cardio-metabolic risk factors and psychological health in physically inactive adults. With a reduced time commitment and greater adherence than MICT, HIT offers a viable and effective exercise strategy to target the growing incidence of metabolic disease and psychological ill-being associated with physical inactivity

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    RNA-Seq Differentiates Tumour and Host mRNA Expression Changes Induced by Treatment of Human Tumour Xenografts with the VEGFR Tyrosine Kinase Inhibitor Cediranib.

    Get PDF
    Pre-clinical models of tumour biology often rely on propagating human tumour cells in a mouse. In order to gain insight into the alignment of these models to human disease segments or investigate the effects of different therapeutics, approaches such as PCR or array based expression profiling are often employed despite suffering from biased transcript coverage, and a requirement for specialist experimental protocols to separate tumour and host signals. Here, we describe a computational strategy to profile transcript expression in both the tumour and host compartments of pre-clinical xenograft models from the same RNA sample using RNA-Seq. Key to this strategy is a species-specific mapping approach that removes the need for manipulation of the RNA population, customised sequencing protocols, or prior knowledge of the species component ratio. The method demonstrates comparable performance to species-specific RT-qPCR and a standard microarray platform, and allowed us to quantify gene expression changes in both the tumour and host tissue following treatment with cediranib, a potent vascular endothelial growth factor receptor tyrosine kinase inhibitor, including the reduction of multiple murine transcripts associated with endothelium or vessels, and an increase in genes associated with the inflammatory response in response to cediranib. In the human compartment, we observed a robust induction of hypoxia genes and a reduction in cell cycle associated transcripts. In conclusion, the study establishes that RNA-Seq can be applied to pre-clinical models to gain deeper understanding of model characteristics and compound mechanism of action, and to identify both tumour and host biomarkers

    The role of interfacial lipids in stabilizing membrane protein oligomers

    Get PDF
    Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways1 but is often difficult to define2 or predict3. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT4, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET5, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors

    From little things, big things grow: trends and fads in 110 years of Australian ornithology

    Full text link
    Publishing histories can reveal changes in ornithological effort, focus or direction through time. This study presents a bibliometric content analysis of Emu (1901&ndash;2011) which revealed 115 trends (long-term changes in publication over time) and 18 fads (temporary increases in publication activity) from the classification of 9,039 articles using 128 codes organised into eight categories (author gender, author affiliation, article type, subject, main focus, main method, geographical scale and geographical location). Across 110 years, private authorship declined, while publications involving universities and multiple institutions increased; from 1960, female authorship increased. Over time, question-driven studies and incidental observations increased and decreased in frequency, respectively. Single species and &lsquo;taxonomic group&rsquo; subjects increased while studies of birds at specific places decreased. The focus of articles shifted from species distribution and activities of the host organisation to breeding, foraging and other biological/ecological topics. Site- and Australian-continental-scales slightly decreased over time; non-Australian studies increased from the 1970s. A wide variety of fads occurred (e.g. articles on bird distribution, 1942&ndash;1951, and using museum specimens, 1906&ndash;1913) though the occurrence of fads decreased over time. Changes over time are correlated with technological, theoretical, social and institutional changes, and suggest ornithological priorities, like those of other scientific disciplines, are temporally labil

    Loss of anti-contractile effect of perivascular adipose tissue in offspring of obese rats

    Get PDF
    RATIONALE: Maternal obesity pre-programmes offspring to develop obesity and associated cardiovascular disease. Perivascular adipose tissue (PVAT) exerts an anti-contractile effect on the vasculature, which is reduced in hypertension and obesity. OBJECTIVE: The objective of this study was to determine whether maternal obesity pre-programmes offspring to develop PVAT dysfunction in later life. METHODS: Female Sprague–Dawley rats were fed a diet containing 10% (control) or 45% fat (high fat diet, HFD) for 12 weeks prior to mating and during pregnancy and lactation. Male offspring were killed at 12 or 24 weeks of age and tension in PVAT-intact or -denuded mesenteric artery segments was measured isometrically. Concentration–response curves were constructed to U46619 and norepinephrine. RESULTS: Only 24-week-old HFD offspring were hypertensive (P<0.0001), although the anti-contractile effect of PVAT was lost in vessels from HFD offspring of each age. Inhibition of nitric oxide (NO) synthase with 100 μM l-NMMA attenuated the anti-contractile effect of PVAT and increased contractility of PVAT-denuded arteries (P<0.05, P<0.0001). The increase in contraction was smaller in PVAT-intact than PVAT-denuded vessels from 12-week-old HFD offspring, suggesting decreased PVAT-derived NO and release of a contractile factor (P<0.07). An additional, NO-independent effect of PVAT was evident only in norepinephrine-contracted vessels. Activation of AMP-activated kinase (with 10 μM A769662) was anti-contractile in PVAT-denuded (P<0.0001) and -intact (P<0.01) vessels and was due solely to NO in controls; the AMPK effect was similar in HFD offspring vessels (P<0.001 and P<0.01, respectively) but was partially NO-independent. CONCLUSIONS: The diminished anti-contractile effects of PVAT in offspring of HFD dams are primarily due to release of a PVAT-derived contractile factor and reduced NO bioavailability

    Validation of <i>N</i>-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of <i>Trypanosoma cruzi</i>

    Get PDF
    BACKGROUND:Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. METHODOLOGY/PRINCIPAL FINDINGS:Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. CONCLUSIONS/SIGNIFICANCE:Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy
    corecore