3,148 research outputs found

    Properties of dust and clouds in the Mars atmosphere: Analysis of Viking IRTM emission phase function sequences

    Get PDF
    An analysis of emission-phase-function (EPF) observations from the Viking Orbiter Infrared Thermal Mapper (IRTM) yields a wide variety of results regarding dust and cloud scattering in the Mars atmosphere and atmospheric-corrected albedos for the surface of Mars. A multiple scattering radiative transfer model incorporating a bidirectional phase function for the surface and atmospheric scattering by dust and clouds is used to derive surface albedos and dust and ice optical properties and optical depths for these various conditions on Mars

    The effects of atmospheric dust on observations of Martian surface albedo

    Get PDF
    The Mariner 9 and Viking missions provided abundant evidence that aeolian processes are active over much of surface of Mars. A radiative transfer model was developed which allows the effects of atmospheric dust loading and variable surface albedo to be investigated. This model incorporated atmospheric dust opacity, the single scattering albedo, and particle phase function of atmospheric dust, the bidirectional; reflectance of the surface, and variable lighting and viewing geometry. The Cerberus albedo feature was examined in detail using this technique

    General description of electromagnetic radiation processes based on instantaneous charge acceleration in `endpoints'

    Get PDF
    We present a new methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation --- the `endpoint formulation' --- combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or `endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation/destruction, and is suited to direct numerical implementation in either the time- or frequency-domains. In this paper, we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the Earth's atmosphere and the Moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan Effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent `bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.Comment: accepted by Phys. Rev. E, new title, some corrections in equations and references, figure styles updated to match journal policie

    Critical properties of the unconventional spin-Peierls system TiOBr

    Full text link
    We have performed detailed x-ray scattering measurements on single crystals of the spin-Peierls compound TiOBr in order to study the critical properties of the transition between the incommensurate spin-Peierls state and the paramagnetic state at Tc2 ~ 48 K. We have determined a value of the critical exponent beta which is consistent with the conventional 3D universality classes, in contrast with earlier results reported for TiOBr and TiOCl. Using a simple power law fit function we demonstrate that the asymptotic critical regime in TiOBr is quite narrow, and obtain a value of beta_{asy} = 0.32 +/- 0.03 in the asymptotic limit. A power law fit function which includes the first order correction-to-scaling confluent singularity term can be used to account for data outside the asymptotic regime, yielding a more robust value of beta_{avg} = 0.39 +/- 0.05. We observe no evidence of commensurate fluctuations above Tc1 in TiOBr, unlike its isostructural sister compound TiOCl. In addition, we find that the incommensurate structure between Tc1 and Tc2 is shifted in Q-space relative to the commensurate structure below Tc1.Comment: 12 pages, 8 figures. Submitted to Physical Review

    Accurate implementation of leaping in space: The spatial partitioned-leaping algorithm

    Full text link
    There is a great need for accurate and efficient computational approaches that can account for both the discrete and stochastic nature of chemical interactions as well as spatial inhomogeneities and diffusion. This is particularly true in biology and nanoscale materials science, where the common assumptions of deterministic dynamics and well-mixed reaction volumes often break down. In this article, we present a spatial version of the partitioned-leaping algorithm (PLA), a multiscale accelerated-stochastic simulation approach built upon the tau-leaping framework of Gillespie. We pay special attention to the details of the implementation, particularly as it pertains to the time step calculation procedure. We point out conceptual errors that have been made in this regard in prior implementations of spatial tau-leaping and illustrate the manifestation of these errors through practical examples. Finally, we discuss the fundamental difficulties associated with incorporating efficient exact-stochastic techniques, such as the next-subvolume method, into a spatial-leaping framework and suggest possible solutions.Comment: 15 pages, 9 figures, 2 table

    Spin-Orbit Coupling in Iridium-Based 5d Compounds Probed by X-ray Absorption Spectroscopy

    Full text link
    We have performed x-ray absorption spectroscopy (XAS) measurements on a series of Ir-based 5d transition metal compounds, including Ir, IrCl3, IrO2, Na2IrO3, Sr2IrO4, and Y2Ir2O7. By comparing the intensity of the "white-line" features observed at the Ir L2 and L3 absorption edges, it is possible to extract valuable information about the strength of the spin-orbit coupling in these systems. We observe remarkably large, non-statistical branching ratios in all Ir compounds studied, with little or no dependence on chemical composition, crystal structure, or electronic state. This result confirms the presence of strong spin-orbit coupling effects in novel iridates such as Sr2IrO4, Na2IrO3, and Y2Ir2O7, and suggests that even simple Ir-based compounds such as IrO2 and IrCl3 may warrant further study. In contrast, XAS measurements on Re-based 5d compounds, such as Re, ReO2, ReO3, and Ba2FeReO6, reveal statistical branching ratios and negligible spin-orbit coupling effects.Comment: 9 pages, 4 figure
    corecore