34 research outputs found
Impact of melamine-tainted milk on foetal kidneys and disease development later in life
published_or_final_versio
Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience
Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue
Chickpea
The narrow genetic base of cultivated chickpea warrants systematic collection,
documentation and evaluation of chickpea germplasm and particularly wild
Cicer species for effective and efficient use in chickpea breeding programmes.
Limiting factors to crop production, possible solutions and ways to overcome
them, importance of wild relatives and barriers to alien gene introgression and
strategies to overcome them and traits for base broadening have been discussed.
It has been clearly demonstrated that resistance to major biotic and abiotic
stresses can be successfully introgressed from the primary gene pool
comprising progenitor species. However, many desirable traits including high
degree of resistance to multiple stresses that are present in the species
belonging to secondary and tertiary gene pools can also be introgressed by
using special techniques to overcome pre- and post-fertilization barriers.
Besides resistance to various biotic and abiotic stresses, the yield QTLs have
also been introgressed from wild Cicer species to cultivated varieties. Status
and importance of molecular markers, genome mapping and genomic tools
for chickpea improvement are elaborated. Because of major genes for various
biotic and abiotic stresses, the transfer of agronomically important traits into
elite cultivars has been made easy and practical through marker-assisted
selection and marker-assisted backcross. The usefulness of molecular markers
such as SSR and SNP for the construction of high-density genetic maps of
chickpea and for the identification of genes/QTLs for stress resistance, quality
and yield contributing traits has also been discussed
Thoracoscoic repair of oesophageal atresia: experience of 33 patients from two tertiary referral centres
Thermal/Optical Methods for Elemental Carbon Quantification in Soils and Urban Dusts: Equivalence of Different Analysis Protocols
Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A hightemperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a lowtemperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.</p
