375 research outputs found

    Apresentação Pélvica: Parto Vaginal Versus Cesariana, Qual a Melhor Intervenção?

    Get PDF
    INTRODUCTION: The best route of delivery for the term breech fetus is still controversial. We aim to compare maternal and neonatal outcomes between vaginal and cesarean term breech deliveries. MATERIAL AND METHODS: Multicentric retrospective cohort study of singleton term breech fetuses delivered vaginally or by elective cesarean section from January 2012 - October 2014. Primary outcomes were maternal and neonatal morbidity or mortality. RESULTS: Sixty five breech fetuses delivered vaginally were compared to 1262 delivered by elective cesarean. Nulliparous women were more common in the elective cesarean group (69.3% vs 24.6%; p < 0.0001). Gestational age at birth was significantly lower in the vaginal delivery group (38 ± 1 weeks vs 39 ± 0.8 weeks; p = 0.0029) as was birth weight (2928 ± 48.4 g vs 3168 ± 11.3 g; p < 0.0001). Apgar scores below seven on the first and fifth minutes were more likely in the vaginal delivery group (1st minute: 18.5% vs 5.9%; p = 0.0006; OR 3.6 [1.9 - 7.0]; 5th minute: 3.1% vs 0.2%; p = 0.0133; OR 20.0 [2.8 - 144.4]), as was fetal trauma (3.1% vs 0.3%: p = 0.031; OR 9.9 [1.8-55.6]). Neither group had cases of fetal acidemia. Admission to the Neonatal Intensive Care Unit, maternal postpartum hemorrhage and the incidence of other obstetric complications were similar between groups. DISCUSSION: Although vaginal breech delivery was associated with lower Apgar scores and higher incidence of fetal trauma, overall rates of such events were low. Admission to the neonatal intensive care unit and maternal outcomes were similar. CONCLUSION: Both delivery routes seem equally valid, neither posing high maternal or neonatal complications' incidence.info:eu-repo/semantics/publishedVersio

    Extrusion limits of magnesium alloys

    Full text link
    Magnesium alloys are generally found to be slower to extrude than aluminum alloys; however, limited quantitative comparisons of the actual operating windows have been published. In this work, the extrusion limits are determined for a series of commercial magnesium alloys (M1, ZM21, AZ31, AZ61, and ZK60). These are compared with the limits established for aluminum alloy AA6063. The maximum extrusion speed of alloy M1 is shown to be similar to AA6063. Alloys ZM21, AZ31, ZK60, and AZ61 exhibit maximum extrusion speeds 44, 18, 4, and 3 pct, respectively, of the maximum measured for AA6063. For AZ31, the maximum extrusion speed is increased by 22 pct after homogenization and by 64 pct for repeat extrusions. The variation in the extrusion limits with changing alloy content is rationalized in terms of differences in the hot working flow stress and solidus temperature.<br /

    Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus

    Get PDF
    Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory

    The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface

    Get PDF
    The rhizosphere is the zone of soil infuenced by a plant root and is critical for plant health and nutrient acquisition. All below ground resources must pass through this dynamic zone prior to their capture by plant roots. However, researching the undisturbed rhizosphere has proved very challenging. Here we compare the temporal changes to the intact rhizosphere pore structure during the emergence of a developing root system in diferent soils. High resolution X-ray Computed Tomography (CT) was used to quantify the impact of root development on soil structural change, at scales relevant to individual micro-pores and aggregates (µm). A comparison of micro-scale structural evolution in homogenously packed soils highlighted the impacts of a penetrating root system in changing the surrounding porous architecture and morphology. Results indicate the structural zone of infuence of a root can be more localised than previously reported (µm scale rather than mm scale). With time, growing roots signifcantly alter the soil physical environment in their immediate vicinity through reducing root-soil contact and crucially increasing porosity at the root-soil interface and not the converse as has often been postulated. This ‘rhizosphere pore structure’ and its impact on associated dynamics are discussed

    ‘A flying start’: Wildlife trypanosomes in tissues of Australian tabanids (Diptera: Tabanidae)

    Get PDF
    Tabanids (syn. horse flies) are biting-flies of medical and veterinary significance because of their ability to transmit a range of pathogens including trypanosomes – some species of which carry a combined health and biosecurity risk. Invertebrate vectors responsible for transmitting species of Trypanosoma between Australian wildlife remains unknown, thus establishing the role of potential vector candidates such as tabanids is of utmost importance. The current study aimed to investigate the presence of indigenous trypanosomes in tabanids from an endemic area of south-west Australia. A total of 148 tabanids were collected, with morphological analysis revealing two subgenera: Scaptia (Pseudoscione) and S. (Scaptia) among collected flies. A parasitological survey using an HRM-qPCR and sequencing approach revealed a high (105/148; 71%) prevalence of trypanosomatid DNA within collected tabanids. Individual tissues - proboscis (labrum, labium and mandibles, hypopharynx), salivary glands, proventriculus, midgut, and hindgut and rectum - were also tested from a subset of 20 tabanids (n = 140 tissues), confirming the presence of Trypanosoma noyesi in 31% of screened tissues, accompanied by T. copemani (3%) and T. vegrandis/T.gilletti (5%). An unconfirmed trypanosomatid sp. was also detected (9%) within tissues. The difference between tissues infected with T. noyesi compared with tissues infected with other trypanosome species was statistically significant (p < 0.05), revealing T. noyesi as the more frequent species detected in the tabanids examined. Fluorescence in situ hybridisation (FISH) and scanning electron microscopy (SEM) confirmed intact parasites within salivary glands and the proboscis respectively, suggesting that both biological and mechanical modes of transmission could occur. This study reveals the presence of Australian Trypanosoma across tabanid tissues and confirms intact parasites within tabanid salivary glands and the proboscis for the first time. Further investigations are required to determine whether tabanids have the vectorial competence to transmit Australian trypanosomes between wildlife

    Morphological and molecular description of Ixodes woyliei n. sp. (Ixodidae) with consideration for co-extinction with its critically endangered marsupial host

    Get PDF
    Background Taxonomic identification of ticks obtained during a longitudinal survey of the critically endangered marsupial, Bettongia penicillata Gray, 1837 (woylie, brush-tailed bettong) revealed a new species of Ixodes Latrielle, 1795. Here we provide morphological data for the female and nymphal life stages of this novel species (Ixodes woyliei n. sp.), in combination with molecular characterisation using the mitochondrial cytochrome c oxidase subunit 1 gene (cox1). In addition, molecular characterisation was conducted on several described Ixodes species and used to provide phylogenetic context. Results Ixodes spp. ticks were collected from the two remaining indigenous B. penicillata populations in south-western Australia. Of 624 individual B. penicillata sampled, 290 (47%) were host to ticks of the genus Ixodes; specifically I. woyliei n. sp., I. australiensis Neumann, 1904, I. myrmecobii Roberts, 1962, I. tasmani Neumann, 1899 and I. fecialis Warburton & Nuttall, 1909. Of these, 123 (42%) were host to the newly described I. woyliei n. sp. In addition, 268 individuals from sympatric marsupial species (166 Trichosurus vulpecula hypoleucus Wagner, 1855 (brushtail possum), 89 Dasyurus geoffroii Gould, 1841 (Western quoll) and 13 Isoodon obesulus fusciventer Gray, 1841 (southern brown bandicoot)) were sampled for ectoparasites and of these, I. woyliei n. sp. was only found on two I. o. fusciventer. Conclusions Morphological and molecular data have confirmed the first new Australian Ixodes tick species described in over 50 years, Ixodes woyliei n. sp. Based on the long-term data collected, it appears this tick has a strong predilection for B. penicillata, with 42% of Ixodes infections on this host identified as I. woyliei n. sp. The implications for this host-parasite relationship are unclear but there may be potential for a future co-extinction event. In addition, new molecular data have been generated for collected specimens of I. australiensis, I. tasmani and museum specimens of I. victoriensis Nuttall, 1916, which for the first time provides molecular support for the subgenus Endopalpiger Schulze, 1935 as initially defined. These genetic data provide essential information for future studies relying on genotyping for species identification or for those tackling the phylogenetic relationships of Australian Ixodes species

    Is jellyfish a suitable ingredient for aquafeed? A comprehensive review of nutritional potential and limitation

    Get PDF
    Jellyfish’s potential for feed production remains largely unexplored and research on their nutritional benefits in aquafeeds is still limited. This systematic review analyzed the nutritional composition of jellyfish and its potential as a sustainable aquaculture feed ingredient, evaluating advantages and limitations. Data from 65 studies were categorized into proximate composition, amino acids, fatty acids, and mineral content. Good proportion of methionine and lysine, high amount of collagen-derived amino acids (glycine, proline, hydroxyproline), the presence of taurine and beneficial long-chain fatty acids (mainly ARA), as well as richness in minerals such as Na, K, Cl, Mg, and Zn, constitute attractive key characteristics for feed application. However, challenges remain, including high moisture and ash content, elevated aluminum levels from present processing methods, and compositional variability. Improved processing methods may enhance their use, but further research is needed to address digestibility, optimize processing, and assess long-term sustainability. This study positions jellyfish as a valuable, sustainable supplement for aquaculture feed, though comprehensive evaluations are necessary to unlock their full potential and ensure consistent quality in commercial applications

    Next generation sequencing reveals widespread trypanosome diversity and polyparasitism in marsupials from Western Australia

    Get PDF
    In Western Australia a number of indigenous Trypanosoma spp. infect susceptible native marsupials, such as the woylie (Bettongia penicillata), brushtail possum (Trichosurus vulpecula), and chuditch (Dasyurus geoffroii). Two genotypes of Trypanosoma copemani (identified as G1 and G2) have been found in the woylie, and G2 has been implicated in the decline of this host species, making its presence of particular interest. Here we used targeted amplicon next generation sequencing (NGS) of the Trypanosoma 18S rDNA loci on 70 Trypanosoma-positive marsupial blood samples, to identify T. copemani genotypes and multiple Trypanosoma infections (polyparasitism) in woylies and cohabiting species in Western Australia. Polyparasitism with Trypanosoma spp. was found in 50% of the wildlife sampled, and within species diversity was high, with 85 zero-radius operational taxonomic units (ZOTUs) identified in nine putative parasite species. Trypanosoma copemani was assigned 17 ZOTUs and was identified in 80% of samples. The most abundant ZOTU isolated (63%) differed slightly from the published genotype of G1, and G2 was the second most abundant ZOTU (14%). Trypanosome diversity was significantly greater in woylies than in brushtail possums, and parasite community composition also differed significantly between these host species. One novel Trypanosoma spp. genotype (Trypanosoma sp. ANU2) was found in 20% of samples. A species of Crithidia was detected in a woylie, and two avian trypanosomes (Trypanosoma avium and Trypanosoma sp. AAT) were identified in woylies for the first time
    corecore