793 research outputs found
Identification of an Autoinhibitory Domain of p21-activated Protein Kinase 5
The p21-activated protein kinases (Paks) are serine/threonine protein kinases activated by binding to Rho family small GTPases, Rac and Cdc42. Recently, Pak family members have been subdivided into two groups, I and II. Group II Paks, including Pak4, Pak5, and Pak6, does not contain the highly conserved autoinhibitory domain that is found in the group I Paks members, i.e. Pak1, Pak2, and Pak3. In the present study, we have purified the glutathione S-transferase fusion form of Pak5 and shown for the first time that Pak5 autophosphorylation can be activated by GTP bound form of Cdc42. Mutation of histidine residues 19 and 22 to leucine on the p21-binding domain of Pak5 completely abolished the binding of Cdc42 and the Cdc42-mediated autophosphorylation. On the other hand, mutation of tyrosine 40 to cysteine of Cdc42 did not knockout the binding of Pak5. Analysis of C-terminal deletion mutants has identified an autoinhibitory fragment of Pak5 that is absent from other group II Pak family members. Taken together, these results suggest that Pak5, like Pak1, contains an autoinhibitory domain and its activity is regulated by Cdc42.postprin
Hereditary spastic paraplegia: Identification of an SPG3A gene mutation in a Chinese family
Hereditary spastic paraplegias are a heterogeneous group of chronic central motor system disorders, characterised by progressive lower limb spasticity. Hereditary spastic paraplegia is clinically classified into pure and complicated forms, by the absence or presence of additional neurological or extra-neurological features. Hereditary spastic paraplegias follow all modes of inheritance and the pure-form autosomal dominant type is the one most commonly reported. Spastic paraplegia 4, autosomal dominant (SPG4, MIM#182601) and spastic paraplegia 3, autosomal dominant (SPG3A, MIM#182600), account for most autosomal dominant hereditary spastic paraplegias. Using DNA mutation analysis, the authors identified an SPG3A missense mutation (p.R239C) in a Chinese family where three members have early-onset pure spastic paraplegia. To our knowledge, this is the first report of a gene mutation in hereditary spastic paraplegias in our locality. DNA-based diagnosis plays a key role in the early diagnosis of familial hereditary spastic paraplegias.published_or_final_versio
Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma
Deleted in liver cancer (DLC1) is a candidate tumor suppressor gene recently isolated from human hepatocellular carcinoma. Structurally, DLC1 protein contains a conserved GTPase-activating protein for Rho family protein (RhoGAP) domain, which has been thought to regulate the activity of Rho family proteins. Previous studies indicated that DLC1 was frequently inactivated in cancer cells. In the present study, we aimed to characterize the tumor suppressor roles of DLC1 in hepatocellular carcinoma. We showed that DLC1 significantly inhibited cell proliferation, anchorage-independent growth, and in vivo tumorigenicity when stably expressed in hepatocellular carcinoma cells. Moreover, DLC1 expression greatly reduced the motility and invasiveness of hepatocellular carcinoma cells. With RhoGAP-deficient DLC1 mutant (DLC1-K714E), we showed that the RhoGAP activity was essential for DLC1-mediated tumor suppressor function. Furthermore, the 292- to 648-amino acid region and the steroidogenic acute regulatory related lipid transfer domain played an auxiliary role to RhoGAP and tumor suppressor function of DLC1. Taken together, our findings showed that DLC1 functions as a tumor suppressor in hepatocellular carcinoma and provide the first evidence to support the hypothesis that DLC1 suppresses cancer cell growth by negatively regulating the activity of Rho proteins. ©2005 American Association for Cancer Research.postprin
Impact of G 2 checkpoint defect on centromeric instability
Centromeric instability is characterized by dynamic formation of centromeric breaks, deletions, isochromosomes and translocations, which are commonly observed in cancer. So far, however, the mechanisms of centromeric instability in cancer cells are still poorly understood. In this study, we tested the hypothesis that G 2 checkpoint defect promotes centromeric instability. Our observations from multiple approaches consistently support this hypothesis. We found that overexpression of cyclin B1, one of the pivotal genes driving G 2 to M phase transition, impaired G 2 checkpoint and promoted the formation of centromeric aberrations in telomerase-immortalized cell lines. Conversely, centromeric instability in cancer cells was ameliorated through reinforcement of G 2 checkpoint by cyclin B1 knockdown. Remarkably, treatment with KU55933 for only 2.5 h, which abrogated G 2 checkpoint, was sufficient to produce centromeric aberrations. Moreover, centromeric aberrations constituted the major form of structural abnormalities in G 2 checkpoint-defective ataxia telangiectasia cells. Statistical analysis showed that the frequencies of centromeric aberrations in G 2 checkpoint-defective cells were always significantly overrepresented compared with random assumption. As there are multiple pathways leading to G 2 checkpoint defect, our finding offers a broad explanation for the common occurrence of centromeric aberrations in cancer cells. © 2011 Macmillan Publishers Limited All rights reserved.postprin
LKB1 tumor suppressor and salt-inducible kinases negatively regulate human T-cell leukemia virus type 1 transcription
published_or_final_versio
Functional role of ICAM-3 polymorphism in genetic susceptibility to SARS infection.
Key Messages 1. Severe acute respiratory syndrome (SARS) patients who are homozygous for intercellular adhesion molecule-3 (ICAM-3) Gly143 showed significant association with higher lactate dehydrogenase levels and lower total white blood cell counts on admission. 2. In vitro functional studies demonstrated low level binding of ICAM-3 to DC-SIGN and a wide variation in T-cell response of the wild-type ICAM-3 genotype.published_or_final_versio
Role of polymorphisms of the inflammatory response genes and DC-SIGNR in genetic susceptibility to SARS and other infections.
Research Fund for the Control of Infectious Diseases: Research Dissemination Reports (Series 2)1. A genetic risk-association study involving more than 1200 subjects showed individuals homozygous for L-SIGN tandem repeats are less susceptible to SARS infection. 2. This was supported by in vitro binding studies that demonstrated homozygous L-SIGN, compared to heterozygous, had higher binding capacity for SARS coronavirus (SARS-CoV), with higher proteasome-dependent viral degradation. In contrast, homozygous L-SIGN demonstrated lower binding capacity for HIV1-gp120.3. Genetic-association studies for single nucleotide polymorphisms of the inflammatory response genes, namely TNF-alpha, INF-alpha, INF-beta, INF-gamma, IL1-alpha, IL1-beta, IL-4, IL-6 and iNOS, failed to show a significant association with SARS clinical outcomes or susceptibility.published_or_final_versio
Association of a single nucleotide polymorphism in the CD209 (DC-SIGN) promoter with SARS severity.
published_or_final_versio
Quasi-Normal Modes of Stars and Black Holes
Perturbations of stars and black holes have been one of the main topics of
relativistic astrophysics for the last few decades. They are of particular
importance today, because of their relevance to gravitational wave astronomy.
In this review we present the theory of quasi-normal modes of compact objects
from both the mathematical and astrophysical points of view. The discussion
includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om,
Kerr and Kerr-Newman) and relativistic stars (non-rotating and
slowly-rotating). The properties of the various families of quasi-normal modes
are described, and numerical techniques for calculating quasi-normal modes
reviewed. The successes, as well as the limits, of perturbation theory are
presented, and its role in the emerging era of numerical relativity and
supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in
Relativity
Histone Modifications at Human Enhancers Reflect Global Cell-Type-Specific Gene Expression
The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene1, 2, 3, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome4, 5, 6. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression
- …
