35 research outputs found
Dual Function of the pUL7-pUL51 Tegument Protein Complex in Herpes Simplex Virus 1 Infection
The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes.
: The is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus replication. Our study focuses on two tegument proteins from herpes simplex virus 1 that are conserved in all herpesviruses: pUL7 and pUL51. We demonstrate that these proteins directly interact and form a functional complex that is important for both virus assembly and modulation of host cell morphology. Further, we identify for the first time that these conserved herpesvirus tegument proteins localize to focal adhesions in addition to cytoplasmic juxtanuclear membranes within infected cells.This work was supported by the Leverhulme Trust (grant RPG-2012-793 to C.M.C.), the Royal Society (University Research Fellowship UF090010 to C.M.C.), and the Royal Society and the Wellcome Trust (Sir Henry Dale Fellowship 098406/Z/12/Z to S.C.G.). L.D. was supported by Wellcome Trust Ph.D. Programme funding (086158/Z/08/Z). D.J.O. was supported by a John Lucas Walker studentship. M.F.A. was supported by a Commonwealth Scholarship Commission PhD scholarship (BDCA-2014-7)
The Murid Herpesvirus-4 gL regulates an entry-associated conformation change in gH.
The glycoprotein H (gH)/gL heterodimer is crucial for herpesvirus membrane fusion. Yet how it functions is not well understood. The Murid Herpesvirus-4 gH, like that of other herpesviruses, adopts its normal virion conformation by associating with gL. However, gH switched back to a gL-independent conformation after virion endocytosis. This switch coincided with a conformation switch in gB and with capsid release. Virions lacking gL constitutively expressed the down-stream form of gH, prematurely switched gB to its down-stream form, and showed premature capsid release with poor infectivity. These data argue that gL plays a key role in regulating a gH and gB functional switch from cell binding to membrane fusion
ACL graft compression: a method to allow reduced tunnel sizes in ACL reconstruction
PURPOSE: A common problem during ACL reconstruction is asymmetry of proximal-distal graft diameter leading to tunnel upsizing and graft-tunnel mismatch. Compression downsizing provides a graft of uniform size, allowing easy passage into a smaller tunnel. The purpose of this study was to quantify the graft compression technique and its effects on graft biomechanics and stability. It was hypothesised that compression downsizing would significantly reduce cross-sectional area (CSA); that no significant changes in graft biomechanics would occur; graft fixation stability would be improved. METHOD: Sixty-eight non-irradiated peroneus longus (PL) tendons were investigated. Twenty were halved and paired into ten four-strand grafts, 20 strands were compressed by 0.5-1 mm diameter and changes in CSA recorded using an alginate mould technique. The following properties were compared with 20 control strands: cyclic strain when loaded 70-220 N for 1000 cycles; stiffness; ultimate tensile load and stress; Young's modulus. 24 PL tendons were quadrupled into grafts, 12 were compressed and all 24 were submerged in Ringer's solution at 37 °C and the CSA recorded over 12 h. Twelve compressed and 12 control quadrupled grafts were mounted in porcine femurs, placed in Ringer's solution for 12 h at 37 °C and graft displacement at the bone tunnel aperture recorded under cyclic loading. RESULTS: Mean decreases in CSA of 31% under a stress of 471 kPa and 21% under a stress of 447 kPa were observed for doubled and quadrupled grafts, respectively. Compressed grafts re-expanded by 19% over 12 h compared to 2% for controls. No significant differences were observed between compressed and control grafts in the biomechanical properties and graft stability; mean cyclic displacements were 0.3 mm for both groups. CONCLUSIONS: No detrimental biomechanical effects of graft compression on allograft PL tendons were observed. Following compression, the grafts significantly increased in size during in vitro joint simulation. No significant difference was observed in graft stability between groups. Graft compression did not cause adverse mechanical effects in vitro. Smaller tunnels for compressed grafts reduce bone loss and ease anatomical placement
Spatial differences in East Scotia Ridge hydrothermal vent food webs: influences of chemistry, microbiology and predation on trophodynamics
The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. δ13C of dissolved inorganic carbon from vent fluids ranged from −4.6‰ to 0.8‰ at E2 and from −4.4‰ to 1.5‰ at E9. The lowest macroconsumer δ13C was observed in peltospiroid gastropods (−30.0‰ to −31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest δ13C occurred in Kiwa sp. (−19.0‰ to −10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. δ13C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the δ13C and δ34S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites
Bibliometric analyses of physical and occupational therapy faculty across Canada indicate productivity and impact of rehabilitation research
© 2015, University of Toronto Press Inc. All rights reserved. Purpose: This study examines physical and occupational therapy faculty across Canada, using bibliometrics and federal funding as indicators of academic impact, and considers the validity of various bibliometric indices. Methods: Faculty members were identified and their rank, professional designation, and department obtained from faculty Web sites. Bibliometric indicators were determined using Publish or Perish software. An independent author (not a faculty member) inspected the data to remove any incorrectly attributed publications. The h-index, citation years, g-index, and total number of citations for each faculty member were retrieved. The Canadian Institutes of Health Research (CIHR) funding database was used to determine the amount of research funding provided to each faculty member as a principal investigator (PI) and his or her total CIHR funding received. Mean faculty indicators by university, rank, gender, and profession were determined. Analysis of variance (ANOVA) was used to detect differences by rank and gender, and measures of association (Pearson correlation coefficients and multiple regression) were used to identify factors that affected h-index and PI funding received. Results: A total of 347 physical and occupational therapy faculty were identified. The median h-index was 5 (inter-quartile range [IQR] 2–8) for assistant professors, 11 (IQR 7– 15) for associate professors, and 18 (IQR 12–26) for full professors. ANOVA indicated no significant differences between male and female faculty in terms of h-index or funding received. Regression analysis indicated that 58% of h-index variance could be explained by gender (p = 0.039), appointment within a department that provides a (rehabilitation science) PhD programme (p \u3c 0.001), rank (p \u3c 0.001), CIHR PI funding (p = 0.001), or total CIHR funding (p \u3c 0.001). Significant predictors of the amount of CIHR funding received as a PI included h-index (p \u3c 0.001) and total number of citations (p = 0.023), which together explained 27% of the variation in funding received. Conclusion: The h-index, although not without flaws, provides a useful metric that indicates that physical and occupational faculty in Canada are productive scientists having a measurable impact and that this impact increases with rank and greater funding
Current worldwide nuclear cardiology practices andradiationexposure: results from the 65 country IAEA nuclear cardiology protocols cross-sectional study (INCAPS)
Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiationoptimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposurewere identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally
Nuclear cardiology practice and associated radiation doses in Europe: results of the IAEA Nuclear Cardiology Protocols Study (INCAPS) for the 27 European countries
Purpose: Nuclear cardiology is widely used to diagnose coronary artery disease and to guide patient management, but data on current practices, radiation dose-related best practices, and radiation doses are scarce. To address these issues, the IAEA conducted a worldwide study of nuclear cardiology practice. We present the European subanalysis. Methods: In March 2013, the IAEA invited laboratories across the world to document all SPECT and PET studies performed in one week. The data included age, gender, weight, radiopharmaceuticals, injected activities, camera type, positioning, hardware and software. Radiation effective dose was calculated for each patient. A quality score was defined for each laboratory as the number followed of eight predefined best practices with a bearing on radiation exposure (range of quality score 0 – 8). The participating European countries were assigned to regions (North, East, South, and West). Comparisons were performed between the four European regions and between Europe and the rest-of-the-world (RoW). Results: Data on 2,381 European patients undergoing nuclear cardiology procedures in 102 laboratories in 27 countries were collected. A cardiac SPECT study was performed in 97.9 % of the patients, and a PET study in 2.1 %. The average effective dose of SPECT was 8.0 ± 3.4 mSv (RoW 11.4 ± 4.3 mSv; P < 0.001) and of PET was 2.6 ± 1.5 mSv (RoW 3.8 ± 2.5 mSv; P < 0.001). The mean effective doses of SPECT and PET differed between European regions (P < 0.001 and P = 0.002, respectively). The mean quality score was 6.2 ± 1.2, which was higher than the RoW score (5.0 ± 1.1; P < 0.001). Adherence to best practices did not differ significantly among the European regions (range 6 to 6.4; P = 0.73). Of the best practices, stress-only imaging and weight-adjusted dosing were the least commonly used. Conclusion: In Europe, the mean effective dose from nuclear cardiology is lower and the average quality score is higher than in the RoW. There is regional variation in effective dose in relation to the best practice quality score. A possible reason for the differences between Europe and the RoW could be the safety culture fostered by actions under the Euratom directives and the implementation of diagnostic reference levels. Stress-only imaging and weight-adjusted activity might be targets for optimization of European nuclear cardiology practice
