26 research outputs found
Expression profiling of blood samples from an SU5416 Phase III metastatic colorectal cancer clinical trial: a novel strategy for biomarker identification
BACKGROUND: Microarray-based gene expression profiling is a powerful approach for the identification of molecular biomarkers of disease, particularly in human cancers. Utility of this approach to measure responses to therapy is less well established, in part due to challenges in obtaining serial biopsies. Identification of suitable surrogate tissues will help minimize limitations imposed by those challenges. This study describes an approach used to identify gene expression changes that might serve as surrogate biomarkers of drug activity. METHODS: Expression profiling using microarrays was applied to peripheral blood mononuclear cell (PBMC) samples obtained from patients with advanced colorectal cancer participating in a Phase III clinical trial. The PBMC samples were harvested pre-treatment and at the end of the first 6-week cycle from patients receiving standard of care chemotherapy or standard of care plus SU5416, a vascular endothelial growth factor (VEGF) receptor tyrosine kinase (RTK) inhibitor. Results from matched pairs of PBMC samples from 23 patients were queried for expression changes that consistently correlated with SU5416 administration. RESULTS: Thirteen transcripts met this selection criterion; six were further tested by quantitative RT-PCR analysis of 62 additional samples from this trial and a second SU5416 Phase III trial of similar design. This method confirmed four of these transcripts (CD24, lactoferrin, lipocalin 2, and MMP-9) as potential biomarkers of drug treatment. Discriminant analysis showed that expression profiles of these 4 transcripts could be used to classify patients by treatment arm in a predictive fashion. CONCLUSIONS: These results establish a foundation for the further exploration of peripheral blood cells as a surrogate system for biomarker analyses in clinical oncology studies
Early B-cell Factor gene association with multiple sclerosis in the Spanish population
BACKGROUND: The etiology of multiple sclerosis (MS) is at present not fully elucidated, although it is considered to result from the interaction of environmental and genetic susceptibility factors. In this work we aimed at testing the Early B-cell Factor (EBF1) gene as a functional and positional candidate risk factor for this neurological disease. Axonal damage is a hallmark for multiple sclerosis clinical disability and EBF plays an evolutionarily conserved role in the expression of proteins essential for axonal pathfinding. Failure of B-cell differentiation was found in EBF-deficient mice and involvement of B-lymphocytes in MS has been suggested from their presence in cerebrospinal fluid and lesions of patients. METHODS: The role of the EBF1 gene in multiple sclerosis susceptibility was analyzed by performing a case-control study with 356 multiple sclerosis patients and 540 ethnically matched controls comparing the EBF1 polymorphism rs1368297 and the microsatellite D5S2038. RESULTS: Significant association of an EBF1-intronic polymorphism (rs1368297, A vs. T: p = 0.02; OR = 1.26 and AA vs. [TA+TT]: p = 0.02; OR = 1.39) was discovered. This association was even stronger after stratification for the well-established risk factor of multiple sclerosis in the Major Histocompatibility Complex, DRB1*1501 (AA vs. [TA+TT]: p = 0.005; OR = 1.78). A trend for association in the case-control study of another EBF1 marker, the allele 5 of the very informative microsatellite D5S2038, was corroborated by Transmission Disequilibrium Test of 53 trios (p = 0.03). CONCLUSION: Our data support EBF1 gene association with MS pathogenesis in the Spanish white population. Two genetic markers within the EBF1 gene have been found associated with this neurological disease, indicative either of their causative role or that of some other polymorphism in linkage disequilibrium with them
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial.
: Previous catheter-based renal denervation studies have reported variable efficacy results. We aimed to evaluate safety and blood pressure response after renal denervation or sham control in patients with uncontrolled hypertension on antihypertensive medications with drug adherence testing. : In this international, randomised, single-blind, sham-control, proof-of-concept trial, patients with uncontrolled hypertension (aged 20-80 years) were enrolled at 25 centres in the USA, Germany, Japan, UK, Australia, Austria, and Greece. Eligible patients had an office systolic blood pressure of between 150 mm Hg and 180 mm Hg and a diastolic blood pressure of 90 mm Hg or higher; a 24 h ambulatory systolic blood pressure of between 140 mm Hg and 170 mm Hg at second screening; and were on one to three antihypertensive drugs with stable doses for at least 6 weeks. Patients underwent renal angiography and were randomly assigned to undergo renal denervation or sham control. Patients, caregivers, and those assessing blood pressure were masked to randomisation assignments. The primary efficacy endpoint was blood pressure change from baseline (measured at screening visit two), based on ambulatory blood pressure measurements assessed at 6 months, as compared between treatment groups. Drug surveillance was used to assess medication adherence. The primary analysis was done in the intention-to-treat population. Safety events were assessed through 6 months as per major adverse events. This trial is registered with ClinicalTrials.gov, number NCT02439775, and follow-up is ongoing. : Between July 22, 2015, and June 14, 2017, 467 patients were screened and enrolled. This analysis presents results for the first 80 patients randomly assigned to renal denervation (n=38) and sham control (n=42). Office and 24 h ambulatory blood pressure decreased significantly from baseline to 6 months in the renal denervation group (mean baseline-adjusted treatment differences in 24 h systolic blood pressure -7·0 mm Hg, 95% CI -12·0 to -2·1; p=0·0059, 24 h diastolic blood pressure -4·3 mm Hg, -7·8 to -0·8; p=0.0174, office systolic blood pressure -6·6 mm Hg, -12·4 to -0·9; p=0·0250, and office diastolic blood pressure -4·2 mm Hg, -7·7 to -0·7; p=0·0190). The change in blood pressure was significantly greater at 6 months in the renal denervation group than the sham-control group for office systolic blood pressure (difference -6·8 mm Hg, 95% CI -12·5 to -1·1; p=0·0205), 24 h systolic blood pressure (difference -7·4 mm Hg, -12·5 to -2·3; p=0·0051), office diastolic blood pressure (difference -3·5 mm Hg, -7·0 to -0·0; p=0·0478), and 24 h diastolic blood pressure (difference -4·1 mm Hg, -7·8 to -0·4; p=0·0292). Evaluation of hourly changes in 24 h systolic blood pressure and diastolic blood pressure showed blood pressure reduction throughout 24 h for the renal denervation group. 3 month blood pressure reductions were not significantly different between groups. Medication adherence was about 60% and varied for individual patients throughout the study. No major adverse events were recorded in either group. : Renal denervation in the main renal arteries and branches significantly reduced blood pressure compared with sham control with no major safety events. Incomplete medication adherence was common. : Medtronic.<br/
Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial
Previous randomised renal denervation studies did not show consistent efficacy in reducing blood pressure. The objective of our study was to evaluate the effect of renal denervation on blood pressure in the absence of antihypertensive medications.
SPYRAL HTN-OFF MED was a multicentre, international, single-blind, randomised, sham-controlled, proof-of-concept trial. Patients were enrolled at 21 centres in the USA, Europe, Japan, and Australia. Eligible patients were drug-naive or discontinued their antihypertensive medications. Patients with an office systolic blood pressure (SBP) of 150 mm Hg or greater and less than 180 mm Hg, office diastolic blood pressure (DBP) of 90 mm Hg or greater, and a mean 24-h ambulatory SBP of 140 mm Hg or greater and less than 170 mm Hg at second screening underwent renal angiography and were randomly assigned to renal denervation or sham control. Patients, caregivers, and those assessing blood pressure were blinded to randomisation assignments. The primary endpoint, change in 24-h blood pressure at 3 months, was compared between groups. Drug surveillance was done to ensure patient compliance with absence of antihypertensive medication. The primary analysis was done in the intention-to-treat population. Safety events were assessed at 3 months. This study is registered with ClinicalTrials.gov, number NCT02439749.
Between June 25, 2015, and Jan 30, 2017, 353 patients were screened. 80 patients were randomly assigned to renal denervation (n=38) or sham control (n=42) and followed up for 3 months. Office and 24-h ambulatory blood pressure decreased significantly from baseline to 3 months in the renal denervation group: 24-h SBP -5·5 mm Hg (95% CI -9·1 to -2·0; p=0·0031), 24-h DBP -4·8 mm Hg (-7·0 to -2·6; p<0·0001), office SBP -10·0 mm Hg (-15·1 to -4·9; p=0·0004), and office DBP -5·3 mm Hg (-7·8 to -2·7; p=0·0002). No significant changes were seen in the sham-control group: 24-h SBP -0·5 mm Hg (95% CI -3·9 to 2·9; p=0·7644), 24-h DBP -0·4 mm Hg (-2·2 to 1·4; p=0·6448), office SBP -2·3 mm Hg (-6·1 to 1·6; p=0·2381), and office DBP -0·3 mm Hg (-2·9 to 2·2; p=0·8052). The mean difference between the groups favoured renal denervation for 3-month change in both office and 24-h blood pressure from baseline: 24-h SBP -5·0 mm Hg (95% CI -9·9 to -0·2; p=0·0414), 24-h DBP -4·4 mm Hg (-7·2 to -1·6; p=0·0024), office SBP -7·7 mm Hg (-14·0 to -1·5; p=0·0155), and office DBP -4·9 mm Hg (-8·5 to -1·4; p=0·0077). Baseline-adjusted analyses showed similar findings. There were no major adverse events in either group.
Results from SPYRAL HTN-OFF MED provide biological proof of principle for the blood-pressure-lowering efficacy of renal denervation.
Medtronic
