8 research outputs found

    Motor imagery and action observation: cognitive tools for rehabilitation

    Get PDF
    Rehabilitation, for a large part may be seen as a learning process where old skills have to be re-acquired and new ones have to be learned on the basis of practice. Active exercising creates a flow of sensory (afferent) information. It is known that motor recovery and motor learning have many aspects in common. Both are largely based on response-produced sensory information. In the present article it is asked whether active physical exercise is always necessary for creating this sensory flow. Numerous studies have indicated that motor imagery may result in the same plastic changes in the motor system as actual physical practice. Motor imagery is the mental execution of a movement without any overt movement or without any peripheral (muscle) activation. It has been shown that motor imagery leads to the activation of the same brain areas as actual movement. The present article discusses the role that motor imagery may play in neurological rehabilitation. Furthermore, it will be discussed to what extent the observation of a movement performed by another subject may play a similar role in learning. It is concluded that, although the clinical evidence is still meager, the use of motor imagery in neurological rehabilitation may be defended on theoretical grounds and on the basis of the results of experimental studies with healthy subjects

    Materials Used Intraoperatively During Oral and Maxillofacial Surgery Procedures

    No full text
    Oral and maxillofacial surgery (OMFS) is a broad scope medical and dental specialty that focuses on the diagnoses and treatment of a wide range of disorders including those that affect the head and neck, as well as the facial complex and skeleton. A number of tools and materials can be used intraoperatively with the intention of increasing the success rate of a surgical procedure and shortening the healing time for patients. In this chapter, we will explore several elements of surgical intervention relating to the use of varying types of bone grafts, along with implementing growth factors and enhancers including bone morphogenetic protein (BMP), transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), and platelet-rich plasma (PRP). In addition, we will examine the use of biodegradable materials including bone plates, membranes, and scaffolds. Further, we will discuss the use of implantable devices in the surgical treatment of patients for replacement of teeth and fixation of hard tissue structures using customizable titanium plates and screws within the realm of OMFS. Finally, we consider what the future holds with regard to technologically assisted surgery
    corecore