1,076 research outputs found
‘Do i care?’ young adults' recalled experiences of early adolescent overweight and obesity: a qualitative study
<p>Objective: Individual behaviour change to reduce obesity requires awareness of, and concern about, weight. This paper therefore describes how young adults, known to have been overweight or obese during early adolescence, recalled early adolescent weight-related awareness and concerns. Associations between recalled concerns and weight-, health- and peer-related survey responses collected during adolescence are also examined.</p>
<p>Design: Qualitative semi-structured interviews with young adults; data compared with responses to self-report questionnaires obtained in adolescence.</p>
<p>Participants: A total of 35 participants, purposively sub-sampled at age 24 from a longitudinal study of a school year cohort, previously surveyed at ages 11, 13 and 15. Physical measures during previous surveys allowed identification of participants with a body mass index (BMI) indicative of overweight or obesity (based on British 1990 growth reference) during early adolescence. Overall, 26 had been obese, of whom 11 had BMI99.6th centile, whereas 9 had been overweight (BMI=95th–97.9th centile).</p>
<p>Measures: Qualitative interview responses describing teenage life, with prompts for school-, social- and health-related concerns. Early adolescent self-report questionnaire data on weight-worries, self-esteem, friends and victimisation (closed questions).</p>
<p>Results: Most, but not all recalled having been aware of their overweight. None referred to themselves as having been obese. None recalled weight-related health worries. Recollection of early adolescent obesity varied from major concerns impacting on much of an individual's life to almost no concern, with little relation to actual severity of overweight. Recalled concerns were not clearly patterned by gender, but young adult males recalling concerns had previously reported more worries about weight, lower self-esteem, fewer friends and more victimisation in early adolescence; no such pattern was seen among females.
Conclusion: The popular image of the unhappy overweight teenager was not borne out. Many obese adolescents, although well aware of their overweight recalled neither major dissatisfaction nor concern. Weight-reduction behaviours are unlikely in such circumstances.</p>
Integrating transposable elements in the 3D genome
Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome
The hand of Homo naledi
A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi
Chiral plasmonics of self-assembled nanorod dimers
Chiral nanoscale photonic systems typically follow either tetrahedral or helical geometries that require four
or more different constituent nanoparticles. Smaller number of particles and different chiral geometries
taking advantage of the self-organization capabilities of nanomaterials will advance understanding of chiral
plasmonic effects, facilitate development of their theory, and stimulate practical applications of
chiroplasmonics. Here we show that gold nanorods self-assemble into side-by-side orientated pairs and
‘‘ladders’’ in which chiral properties originate from the small dihedral angle between them. Spontaneous
twisting of one nanorod versus the other one breaks the centrosymmetric nature of the parallel assemblies.
Two possible enantiomeric conformations with positive and negative dihedral angles were obtained with
different assembly triggers. The chiral nature of the angled nanorod pairs was confirmed by 4p full space
simulations and the first example of single-particle CD spectroscopy. Self-assembled nanorod pairs and
‘‘ladders’’ enable the development of chiral metamaterials, (bio)sensors, and new catalytic processes
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Integration of face and voice during emotion perception : is there anything gained for the perceptual system beyond stimulus modality redundancy?
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression
Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus
Toxoplasma gondii Clonal Strains All Inhibit STAT1 Transcriptional Activity but Polymorphic Effectors Differentially Modulate IFN gamma Induced Gene Expression and STAT1 Phosphorylation
Host defense against the parasite Toxoplasma gondii requires the cytokine interferon-gamma (IFNγ). However, Toxoplasma inhibits the host cell transcriptional response to IFNγ, which is thought to allow the parasite to establish a chronic infection. It is not known whether all strains of Toxoplasma block IFNγ-responsive transcription equally and whether this inhibition occurs solely through the modulation of STAT1 activity or whether other transcription factors are involved. We find that strains from three North American/European clonal lineages of Toxoplasma, types I, II, and III, can differentially modulate specific aspects of IFNγ signaling through the polymorphic effector proteins ROP16 and GRA15. STAT1 tyrosine phosphorylation is activated in the absence of IFNγ by the Toxoplasma kinase ROP16, but this ROP16-activated STAT1 is not transcriptionally active. Many genes induced by STAT1 can also be controlled by other transcription factors and therefore using these genes as specific readouts to determine Toxoplasma inhibition of STAT1 activity might be inappropriate. Indeed, GRA15 and ROP16 modulate the expression of subsets of IFNγ responsive genes through activation of the NF-κB/IRF1 and STAT3/6 transcription factors, respectively. However, using a stable STAT1-specific reporter cell line we show that strains from the type I, II, and III clonal lineages equally inhibit STAT1 transcriptional activity. Furthermore, all three of the clonal lineages significantly inhibit global IFNγ induced gene expression
Sequencing and timing of strategic responses after industry disruption: evidence from post-deregulation competition in the U.S. railroad industry
This paper examines the sequencing and timing of firms’ strategic responses after significant industry disruption. We show that it is not the single strategic choice or response per se, but the sequencing and patterns of consecutive strategic responses that drive a firm’s adaptation and survival in the aftermath of a shift in the industry. We find that firms’ renewal efforts involved differential adaptability in finding balance at the juxtaposition of responding to demand-side pressures and choosing a path of new capability acquisition efficiently. Our study underscores the importance of taking a sequencing approach to studying strategic responses to industry disruption
TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease
- …
