34 research outputs found
Translocations as Experiments in the Ecological Resilience of an Asocial Mega-Herbivore
Species translocations are remarkable experiments in evolutionary ecology, and increasingly critical to biodiversity conservation. Elaborate socio-ecological hypotheses for translocation success, based on theoretical fitness relationships, are untested and lead to complex uncertainty rather than parsimonious solutions. We used an extraordinary 89 reintroduction and 102 restocking events releasing 682 black rhinoceros (Diceros bicornis) to 81 reserves in southern Africa (1981–2005) to test the influence of interacting socio-ecological and individual characters on post-release survival. We predicted that the socio-ecological context should feature more prominently after restocking than reintroduction because released rhinoceros interact with resident conspecifics. Instead, an interaction between release cohort size and habitat quality explained reintroduction success but only individuals' ages explained restocking outcomes. Achieving translocation success for many species may not be as complicated as theory suggests. Black rhino, and similarly asocial generalist herbivores without substantial predators, are likely to be resilient to ecological challenges and robust candidates for crisis management in a changing world
Divergence in transcriptional and regulatory responses to mating in male and female fruitflies
Mating induces extensive physiological, biochemical and behavioural changes in female animals of many taxa. In contrast, the overall phenotypic and transcriptomic consequences of mating for males, hence how they might differ from those of females, are poorly described. Post mating responses in each sex are rapidly initiated, predicting the existence of regulatory mechanisms in addition to transcriptional responses involving de novo gene expression. That post mating responses appear different for each sex also predicts that the genome-wide signatures of mating should show evidence of sex-specific specialisation. In this study, we used high resolution RNA sequencing to provide the first direct comparisons of the transcriptomic responses of male and female Drosophila to mating, and the first comparison of mating-responsive miRNAs in both sexes in any species. As predicted, the results revealed the existence of sex- and body part-specific mRNA and miRNA expression profiles. More genes were differentially expressed in the female head-thorax than the abdomen following mating, whereas the opposite was true in males. Indeed, the transcriptional profile of male head-thorax tissue was largely unaffected by mating, and no differentially expressed genes were detected at the most stringent significance threshold. A subset of ribosomal genes in females were differentially expressed in both body parts, but in opposite directions, consistent with the existence of body part-specific resource allocation switching. Novel, mating-responsive miRNAs in each sex were also identified, and a miRNA-mRNA interactions analysis revealed putative targets among mating-responsive genes. We show that the structure of genome-wide responses by each sex to mating is strongly divergent, and provide new insights into how shared genomes can achieve characteristic distinctiveness
Sex and friendship in a multilevel society: behavioural patterns and associations between female and male Guinea baboons
One key question in social evolution is the identification of factors that promote the formation and maintenance of stable bonds between females and males beyond the mating context. Baboons lend themselves to examine this question, as they vary in social organisation and male-female association patterns. We report the results from the first systematic observations of individually identified wild female Guinea baboons. Guinea baboons live in a multilevel society with female-biased dispersal. Although several males could be found within 5 m of females, each female chiefly associated with one “primary” male at the 2 m distance. Social interactions occurred predominantly with the primary male, and female reproductive state had little influence on interaction patterns. The number of females per primary male varied from 1 to 4. During the 17-month study period, half of the females transferred between different males one or multiple times. A subset of females maintained weaker affiliative nonsexual relationships with other “secondary” males. Units composed of primary males with females, and occasional secondary males, apparently form the core of the Guinea baboon society. The social organisation and mating patterns of Guinea and hamadryas baboons may have a common evolutionary origin, despite notable differences in relationship quality. Specifically, Guinea baboon females appear to have greater leverage in their association patterns than hamadryas baboon females. Although we cannot yet explain the lack of overt male control over females, results generally support the notion that phylogenetic descent may play an important role in shaping social systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00265-015-2050-6) contains supplementary material, which is available to authorized users
