85 research outputs found
Histone Deacetylases Control Neurogenesis in Embryonic Brain by Inhibition of BMP2/4 Signaling
Background
Histone-modifying enzymes are essential for a wide variety of cellular processes dependent upon changes in gene expression. Histone deacetylases (HDACs) lead to the compaction of chromatin and subsequent silencing of gene transcription, and they have recently been implicated in a diversity of functions and dysfunctions in the postnatal and adult brain including ocular dominance plasticity, memory consolidation, drug addiction, and depression. Here we investigate the role of HDACs in the generation of neurons and astrocytes in the embryonic brain.
Principal Findings
As a variety of HDACs are expressed in differentiating neural progenitor cells, we have taken a pharmacological approach to inhibit multiple family members. Inhibition of class I and II HDACs in developing mouse embryos with trichostatin A resulted in a dramatic reduction in neurogenesis in the ganglionic eminences and a modest increase in neurogenesis in the cortex. An identical effect was observed upon pharmacological inhibition of HDACs in in vitro-differentiating neural precursors derived from the same brain regions. A reduction in neurogenesis in ganglionic eminence-derived neural precursors was accompanied by an increase in the production of immature astrocytes. We show that HDACs control neurogenesis by inhibition of the bone morphogenetic protein BMP2/4 signaling pathway in radial glial cells. HDACs function at the transcriptional level by inhibiting and promoting, respectively, the expression of Bmp2 and Smad7, an intracellular inhibitor of BMP signaling. Inhibition of the BMP2/4 signaling pathway restored normal levels of neurogenesis and astrogliogenesis to both ganglionic eminence- and cortex-derived cultures in which HDACs were inhibited.
Conclusions
Our results demonstrate a transcriptionally-based regulation of BMP2/4 signaling by HDACs both in vivo and in vitro that is critical for neurogenesis in the ganglionic eminences and that modulates cortical neurogenesis. The results also suggest that HDACs may regulate the developmental switch from neurogenesis to astrogliogenesis that occurs in late gestation
Inhibition of Toxic Shock by Human Monoclonal Antibodies against Staphylococcal Enterotoxin B
BACKGROUND: Staphylococcus aureus is implicated in many opportunistic bacterial infections around the world. Rising antibiotic resistance and few alternative methods of treatment are just two looming problems associated with clinical management of S. aureus. Among numerous virulence factors produced by S. aureus, staphylococcal enterotoxin (SE) B is a secreted protein that binds T-cell receptor and major histocompatibility complex class II, potentially causing toxic shock mediated by pathological activation of T cells. Recombinant monoclonal antibodies that target SEB and block receptor interactions can be of therapeutic value. METHODOLOGY/PRINCIPAL FINDINGS: The inhibitory and biophysical properties of ten human monoclonal antibodies, isolated from a recombinant library by panning against SEB vaccine (STEBVax), were examined as bivalent Fabs and native full-length IgG (Mab). The best performing Fabs had binding affinities equal to polyclonal IgG, low nanomolar IC(50)s against SEB in cell culture assays, and protected mice from SEB-induced toxic shock. The orthologous staphylococcal proteins, SEC1 and SEC2, as well as streptococcal pyrogenic exotoxin C were recognized by several Fabs. Four Fabs against SEB, with the lowest IC(50)s, were converted into native full-length Mabs. Although SEB-binding kinetics were identical between each Fab and respective Mab, a 250-fold greater inhibition of SEB-induced T-cell activation was observed with two Mabs. CONCLUSIONS/SIGNIFICANCE: Results suggest that these human monoclonal antibodies possess high affinity, target specificity, and toxin neutralization qualities essential for any therapeutic agent
Kuhnian revolutions in neuroscience: the role of tool development.
The terms "paradigm" and "paradigm shift" originated in "The Structure of Scientific Revolutions" by Thomas Kuhn. A paradigm can be defined as the generally accepted concepts and practices of a field, and a paradigm shift its replacement in a scientific revolution. A paradigm shift results from a crisis caused by anomalies in a paradigm that reduce its usefulness to a field. Claims of paradigm shifts and revolutions are made frequently in the neurosciences. In this article I will consider neuroscience paradigms, and the claim that new tools and techniques rather than crises have driven paradigm shifts. I will argue that tool development has played a minor role in neuroscience revolutions.The work received no fundin
Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome
Background: Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease. Methodology/Principal Findings: To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. Conclusions/Significance: We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.Chelsee A. Hewitt, King-Hwa Ling, Tobias D. Merson, Ken M. Simpson, Matthew E. Ritchie, Sarah L. King, Melanie A. Pritchard, Gordon K. Smyth, Tim Thomas, Hamish S. Scott and Anne K. Vos
Properties, production, and applications of camelid single-domain antibody fragments
Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications
Factorial validity of the Toronto Alexithymia Scale (TAS-20) in clinical samples: A critical examination of the literature and a psychometric study in anorexia nervosa
There is extensive use of the 20-item Toronto Alexithymia Scale (TAS-20) in research and clinical practice in anorexia nervosa (AN), though it is not empirically established in this population. This study aims to examine the factorial validity of the TAS-20 in a Portuguese AN sample (N = 125), testing four different models (ranging from 1 to 4 factors) that were identified in critical examination of existing factor analytic studies. Results of confirmatory factor analysis (CFA) suggested that the three-factor solution, measuring difficulty identifying (DIF) and describing feelings (DDF), and externally oriented thinking (EOT), was the best fitting model. The quality of measurement improves if two EOT items (16 and 18) are eliminated. Internal consistency of EOT was low and decreased with age. The results provide support for the factorial validity of the TAS-20 in AN. Nevertheless, the measurement of EOT requires some caution and may be problematic in AN adolescents.Center for Psychology at the University of Porto, Portuguese Science Foundation (FCT UID/PSI/00050/2013) and EU FEDER through COMPETE 2020 program (POCI-01-0145-FEDER-007294info:eu-repo/semantics/acceptedVersio
The effect of habitat and number of inhabitants on the population sizes of feral pigeons around towns in northern Poland
Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations.
Understanding how biological and environmental factors interactively shape the global distribution of plant and animal genetic diversity is fundamental to biodiversity conservation. Genetic diversity measured in local populations (GDP) is correspondingly assumed representative for population fitness and eco-evolutionary dynamics. For 8356 populations across the globe, we report that plants systematically display much lower GDP than animals, and that life history traits shape GDP patterns both directly (animal longevity and size), and indirectly by mediating core-periphery patterns (animal fecundity and plant dispersal). Particularly in some plant groups, peripheral populations can sustain similar GDP as core populations, emphasizing their potential conservation value. We further find surprisingly weak support for general latitudinal GDP trends. Finally, contemporary rather than past climate contributes to the spatial distribution of GDP, suggesting that contemporary environmental changes affect global patterns of GDP. Our findings generate new perspectives for the conservation of genetic resources at worldwide and taxonomic-wide scales
Tandem spinal stenosis: a case of stenotic cauda equina syndrome following cervical decompression and fusion for spondylotic cervical myelopathy
- …
