702 research outputs found

    Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA

    Architecture and dynamics of the jasmonic acid gene regulatory network

    Get PDF
    Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. To advance our understanding of the architecture and dynamic regulation of the JA gene regulatory network, we performed a high-resolution RNA-seq time series of methyl JA-treated Arabidopsis thaliana at 15 time points over a 16-h period. Computational analysis showed that methyl JA (MeJA) induces a burst of transcriptional activity, generating diverse expression patterns over time that partition into distinct sectors of the JA response targeting specific biological processes. The presence of transcription factor (TF) DNA binding motifs correlated with specific TF activity during temporal MeJA-induced transcriptional reprogramming. Insight into the underlying dynamic transcriptional regulation mechanisms was captured in a chronological model of the JA gene regulatory network. Several TFs, including MYB59 and bHLH27, were uncovered as early network components with a role in pathogen and insect resistance. Analysis of subnetworks surrounding the TFs ORA47, RAP2.6L, MYB59, and ANAC055, using transcriptome profiling of overexpressors and mutants, provided insights into their regulatory role in defined modules of the JA network. Collectively, our work illuminates the complexity of the JA gene regulatory network, pinpoints and validates previously unknown regulators, and provides a valuable resource for functional studies on JA signaling components in plant defense and development

    Cardiorespiratory and perceptual responses to self-regulated and imposed submaximal arm-leg ergometry

    Get PDF
    Purpose: This study compared cardiorespiratory and perceptual responses to exercise using self-regulated and imposed power outputs distributed between the arms and legs. Methods Ten males (age 21.7 ± 3.4 years) initially undertook incremental arm-crank ergometry (ACE) and cycle ergometry (CYC) tests to volitional exhaustion to determine peak power output (Wpeak). Two subsequent tests involved 20-min combined arm–leg ergometry (ALE) trials, using imposed and self-regulated protocols, both of which aimed to elicit an exercising heart rate of 160 beats min−1. During the imposed trial, arm and leg intensity were set at 40% of each ergometer-specific Wpeak. During the self-regulated trial, participants were asked to self-regulate cadence and resistance to achieve the target heart rate. Heart rate (HR), oxygen uptake (V˙O2 ), pulmonary ventilation (V˙E ), and ratings of perceived exertion (RPE) were recorded continuously. Results As expected, there were no differences between imposed and self-regulated trials for HR, V˙O2 , and V˙E (all P ≥ 0.05). However, central RPE and local RPE for the arms were lower during self-regulated compared imposed trials (P ≤ 0.05). Lower RPE during the self-regulated trial was related to preferential adjustments in how the arms (33 ± 5% Wpeak) and legs (46 ± 5% Wpeak) contributed to the exercise intensity. Conclusions: This study demonstrates that despite similar metabolic and cardiovascular strain elicited by imposed and self-regulated ALE, the latter was perceived to be less strenuous, which is related to participants doing more work with the legs and less work with the arms to achieve the target intensity

    Effects of permafrost aggradation on peat properties as determined from a pan-arctic synthesis of plant macrofossils

    Get PDF
    ©2015. American Geophysical Union. All Rights Reserved.This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2015JG003061Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m-2 y-1) than in permafrost-free bogs (18 g C m-2 y-1), and were lowest in boreal permafrost peatlands (14 g C m-2 y-1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and re-aggradation. Using data synthesis, we've identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.National Science FoundationUSGS Climate and Land-useChange Research and Development ProgramAcademy of FinlandRoyal Swedish Academy of ScienceYmer-80, Knut & Alice Wallenberg and Ahlmann Foundation

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Male infertility in spinal cord trauma

    Get PDF
    Every year there are 10 thousand new cases of patients victimized by spinal cord trauma (SCT) in the United States and it is estimated that there are 7 thousand new cases in Brazil. Eighty percent of patients are fertile males. Infertility in this patient group is due to 3 main factors resulting from spinal cord lesions: erectile dysfunction, ejaculatory disorder and low sperm counts. Erectile dysfunction has been successfully treated with oral and injectable medications, use of vacuum devices and penile prosthesis implants. The technological improvement in penile vibratory stimulation devices (PVS) and rectal probe electro-ejaculation (RPE) has made such procedures safer and accessible to patients with ejaculatory dysfunction. Despite the normal number of spermatozoa found in semen of spinal cord-injured patients, their motility is abnormal. This change does not seem to be related to changes in scrotal thermal regulation, frequency of ejaculation or duration of spinal cord damage but to factors related to the seminal plasma. Despite the poor seminal quality, increasingly more men with SCT have become fathers through techniques ranging from simple homologous insemination to sophisticated assisted reproduction techniques such as intracytoplasmic sperm injection (ICSI).Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Department of UrologySan Francisco Home School Section of UrologyUNIFESP, EPM, Department of UrologySciEL
    corecore