49 research outputs found

    Three-dimensional structure of a viral genome-delivery portal vertex.

    Get PDF
    DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here, we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25-Å-resolution structure of the portal-protein core bound to 12 copies of gene product 4 (gp4) reveals a ~1.1-MDa assembly formed by 24 proteins. Unexpectedly, a lower-resolution structure of the full-length portal protein unveils the unique topology of the C-terminal domain, which forms a ~200-Å-long α-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell

    Workloads and strain process in Community Health Agents

    Get PDF
    ABSTRACT OBJECTIVE To identify the workloads present in the work activities of community health agents (CHAs) and the resulting strain processes. METHOD A descriptive, exploratory, cross-sectional and quantitative study conducted with 137 CHAs. Data were collected through a questionnaire and interview guided by the health surveillance software called SIMOSTE (Health Monitoring System of Nursing Workers), following the ethical codes of the current law. RESULTS In total, were identified 140 workloads involved in 122 strain processes, represented by the occurrence of health problems of the CHAs. The mechanical (55.00%) and biological (16.43%) loads stood out. The most common strain processes were the external causes of morbidity and mortality (62.31%) and diseases of the musculoskeletal system and connective tissue (10.66%). CONCLUSION From the identified overloads, it became evident that all workloads are present in the work process of CHAs, highlighting the mechanical load, represented mainly by external causes of morbidity and mortality that are related to occupational accidents

    A Common and Unstable Copy Number Variant Is Associated with Differences in Glo1 Expression and Anxiety-Like Behavior

    Get PDF
    Glyoxalase 1 (Glo1) has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. We used mouse Affymetrix exon arrays to detect copy number variants (CNV) among inbred mouse strains and thereby identified a ∼475 kb tandem duplication on chromosome 17 that includes Glo1 (30,174,390–30,651,226 Mb; mouse genome build 36). We developed a PCR-based strategy and used it to detect this duplication in 23 of 71 inbred strains tested, and in various outbred and wild-caught mice. Presence of the duplication is associated with a cis-acting expression QTL for Glo1 (LOD>30) in BXD recombinant inbred strains. However, evidence for an eQTL for Glo1 was not obtained when we analyzed single SNPs or 3-SNP haplotypes in a panel of 27 inbred strains. We conclude that association analysis in the inbred strain panel failed to detect an eQTL because the duplication was present on multiple highly divergent haplotypes. Furthermore, we suggest that non-allelic homologous recombination has led to multiple reversions to the non-duplicated state among inbred strains. We show associations between multiple duplication-containing haplotypes, Glo1 expression and anxiety-like behavior in both inbred strain panels and outbred CD-1 mice. Our findings provide a molecular basis for differential expression of Glo1 and further implicate Glo1 in anxiety-like behavior. More broadly, these results identify problems with commonly employed tests for association in inbred strains when CNVs are present. Finally, these data provide an example of biologically significant phenotypic variability in model organisms that can be attributed to CNVs

    Psychosocial working conditions and the risk of depression and anxiety disorders in the Danish workforce

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine the risk of depressive and anxiety disorders according to psychosocial working conditions in a large population-based sample.</p> <p>Methods</p> <p>Job Exposure Matrix was applied to assess psychosocial working conditions in a population-based nested case-control study of 14,166 psychiatric patients, diagnosed with depressive or anxiety disorders during 1995–1998 selected from The Danish Psychiatric Central Research Register, compared with 58,060 controls drawn from Statistics Denmark's Integrated Database for Labour Market Research.</p> <p>Results</p> <p>Low job control was associated with an increased risk of anxiety disorders in men (IRR 1.40, 95% CI 1.24–1.58).</p> <p>In women an elevated risk of depression was related to high emotional demands (IRR 1.39, 95%CI 1.22–1.58) and to working with people (IRR 1.15, 95% CI 1.01–1.30). In both sexes high demands were associated with a decreased risk of anxiety disorders. There was a weak association between job strain and anxiety disorders in men (IRR 1.13, 95%, CI 1.02–1.25)</p> <p>Conclusion</p> <p>Psychosocial work exposures related to the risk of depressive and anxiety disorders differ as between the sexes. The pattern of risks is inconsistent. The results give rise to rethinking both study designs and possible causal links between work exposures and mental health.</p

    The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective

    Get PDF
    A major aim of this review is to determine which physiological functions are adopted by adults and larvae to survive the winter season with low food supply and their relative importance. A second aim is to clarify the extent to which seasonal variation in larval and adult krill physiology is mediated by environmental factors with a strong seasonality, such as food supply or day light. Experimental studies on adult krill have demonstrated that speciWc physiological adaptations during autumn and winter, such as reduced metabolic rates and feeding activity, are not caused simply by the scarcity of food, as was previously assumed. These adaptations appear to be inXuenced by the local light regime. The physiological functions that larval krill adopt during winter (reduced metabolism, delayed development, lipid utilisation, and variable growth rates) are, in contrast to the adults, under direct control by the available food supply. During winter, the adults often seem to have little association with sea ice (at least until early spring). The larvae, however, feed within sea ice but mainly on the grazers of the ice algal community rather than on the algae themselves. In this respect, a miss-match in timing of the occurrence of the last phytoplankton blooms in autumn and the start of the sea ice formation, as has been increasingly observed in the west Antarctic Peninsula (WAP) region, will impact larval krill development during winter in terms of food supply and consequently the krill stock in this region

    MUTATIONS THAT AFFECT THE FOLDING OF RIBOSE-BINDING PROTEIN SELECTED AS SUPPRESSORS OF A DEFECT IN EXPORT IN ESCHERICHIA-COLI

    No full text
    It has been proposed (Randall, L. L., and Hardy, S. J. S. (1986) Cell 46, 921-928) that export of protein involves a kinetic partitioning between the pathway that leads to productive export and the pathway that leads to the folding of polypeptides into a stable conformation that is incompatible with export. As predicted from this model, a decrease in the rate of export of maltose-binding protein to the periplasmic space in Escherichia coli resulting from a defect in the leader sequence was able to be partially overcome by a mutation that slowed the folding of the precursor, thereby increasing the time in which the polypeptide was competent for export. (Liu, G., Topping, T. B., Cover, W. H., and Randall, L. L. (1988) J. Biol. Chem. 263, 14790-14793). Here we describe mutations of the gene encoding ribose-binding protein that were selected as suppressors of a defect in export of that protein and that alter the folding pathway. We propose that selection of such suppressors may provide a general method to obtain mutations that affect the folding properties of any protein that can be expressed and exported in E. coli
    corecore