131 research outputs found
Combining 1,3-Ditriazolylbenzene and Quinoline to Discover a New G-Quadruplex-Interactive Small Molecule Active against Cancer Stem-Like Cells
Quadruplex nucleic acids are promising targets for cancer therapy. In this study we used a fragment‐based approach to create new flexible G‐quadruplex (G4) DNA‐interactive small molecules with good calculated oral drug‐like properties, based on quinoline and triazole heterocycles. G4 melting temperature and polymerase chain reaction (PCR)‐stop assays showed that two of these compounds are selective G4 ligands, as they were able to induce and stabilize G4s in a dose‐ and DNA sequence‐dependent manner. Molecular docking studies have suggested plausible quadruplex binding to both the G‐quartet and groove, with the quinoline module playing the major role. Compounds were screened for cytotoxicity against four cancer cell lines, where 4,4′‐(4,4′‐(1,3‐phenylene)bis(1H‐1,2,3‐triazole‐4,1‐diyl))bis(1‐methylquinolin‐1‐ium) (1 d) showed the greater activity. Importantly, dose–response curves show that 1 d is cytotoxic in the human colon cancer HT‐29 cell line enriched in cancer stem‐like cells, a subpopulation of cells implicated in chemoresistance. Overall, this study identified a new small molecule as a promising lead for the development of drugs targeting G4 in cancer stem cells
Effect of bilirubin on cytochrome c oxidase activity of mitochondria from mouse brain and liver
<p>Abstract</p> <p>Background</p> <p>The unbound, free concentration (B<sub>f</sub>) of unconjugated bilirubin (UCB), and not the total UCB level, has been shown to correlate with bilirubin cytotoxicity, but the key molecular mechanisms accounting for the toxic effects of UCB are largely unknown.</p> <p>Findings</p> <p>Mouse liver mitochondria increase unbound UCB oxidation, consequently increasing the apparent rate constant for unbound UCB oxidation by HRP (Kp), higher than in control and mouse brain mitochondria, emphasizing the importance of determining Kp in complete systems containing the organelles being studied. The <it>in vitro </it>effects of UCB on cytochrome <it>c </it>oxidase activity in mitochondria isolated from mouse brain and liver were studied at B<sub>f </sub>ranging from 22 to 150 nM. The results show that UCB at B<sub>f </sub>up to 60 nM did not alter mitochondrial cytochrome <it>c </it>oxidase activity, while the higher concentrations significantly inhibited the enzyme activity by 20% in both liver and brain mitochondria.</p> <p>Conclusions</p> <p>We conclude that it is essential to include the organelles being studied in the medium used in measuring both Kp and B<sub>f</sub>. A moderately elevated, pathophysiologically-relevant B<sub>f </sub>impaired the cytochrome <it>c </it>oxidase activity modestly in mitochondria from mouse brain and liver.</p
Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease
Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with nonalcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease
Pilot study for a trial of ursodeoxycholic acid and/or early delivery for obstetric cholestasis
Tauroursodeoxycholic acid for the treatment of acute and chronic neurodegenerative diseases
Tauroursodeoxycholic acid for the treatment of acute and chronic neurodegenerative diseases
Rat cultured neuronal and glial cells respond differently to toxicity of unconjugated bilirubin
High levels of unconjugated bilirubin (UCB) can be neurotoxic. Nevertheless, the mechanism of UCB interaction with neural cells is still unknown. This study investigates whether cultured rat neurons and astrocytes respond differently to UCB exposure. UC
- …
